首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In most stochastic models addressing the persistence of small populations, environmental noise is included by imposing a synchronized effect of the environment on all individuals. However, buffer mechanisms are likely to exist that may counteract this synchronization to some degree. 2. We have studied whether the flexibility in the mating system, which has been observed in some bird species, is a potential mechanism counteracting the synchronization of environmental fluctuations. Our study organism is the lesser spotted woodpecker Picoides minor (Linnaeus), a generally monogamous species. However, facultative polyandry, where one female mates with two males with separate nests, was observed in years with male-biased sex ratio. 3. We constructed an individual-based model from data and observations of a population in Taunus, Germany. We tested the impact of three behavioural scenarios on population persistence: (1) strict monogamy; (2) polyandry without costs; and (3) polyandry assuming costs in terms of lower survival and reproductive success for secondary males. We assumed that polyandry occurs only in years with male-biased sex ratio and only for females with favourable breeding conditions. 4. Even low rates of polyandry had a strong positive effect on population persistence. The increase of persistence with carrying capacity was slower in the monogamous scenario, indicating strong environmental noise. In the polyandrous scenarios, the increase of persistence was stronger, indicating a buffer mechanism. In the polyandrous scenarios, populations had a higher mean population size, a lower variation in number of individuals, and recovered faster after a population breakdown. Presuming a realistic polyandry rate and costs for polyandry, there was still a strong effect of polyandry on persistence. 5. The results show that polyandry and in general flexibility in mating systems is a buffer mechanism that can significantly reduce the impact of environmental and demographic noise in small populations. Consequently, we suggest that even behaviour that seems to be exceptional should be considered explicitly when predicting the persistence of populations.  相似文献   

2.
Sexual selection on males is predicted to increase population fitness, and delay population extinction, when mating success negatively covaries with genetic load across individuals. However, such benefits of sexual selection could be counteracted by simultaneous increases in genome-wide drift resulting from reduced effective population size caused by increased variance in fitness. Resulting fixation of deleterious mutations could be greatest in small populations, and when environmental variation in mating traits partially decouples sexual selection from underlying genetic variation. The net consequences of sexual selection for genetic load and population persistence are therefore likely to be context dependent, but such variation has not been examined. We use a genetically explicit individual-based model to show that weak sexual selection can increase population persistence time compared to random mating. However, for stronger sexual selection such positive effects can be overturned by the detrimental effects of increased genome-wide drift. Furthermore, the relative strengths of mutation-purging and drift critically depend on the environmental variance in the male mating trait. Specifically, increasing environmental variance caused stronger sexual selection to elevate deleterious mutation fixation rate and mean selection coefficient, driving rapid accumulation of drift load and decreasing population persistence times. These results highlight an intricate balance between conflicting positive and negative consequences of sexual selection on genetic load, even in the absence of sexually antagonistic selection. They imply that environmental variances in key mating traits, and intrinsic genetic drift, should be properly factored into future theoretical and empirical studies of the evolution of population fitness under sexual selection.  相似文献   

3.
The number of population founders and the size of the population are two important variables in determining how much gene diversity can be retained in a population. A model is developed to determine the most cost‐effective balance of those two variables, based on comparing the marginal costs of increasing the number of founders vs. increasing the population size. Marginal costs, in this case, are the costs of increasing the number of founders or the population size by one animal. For a goal of retaining 90% gene diversity for 10–15 generations (approximately 100 years), the current recommendation of 20 effective founders is very close to the least‐cost solution when the ratio of the marginal costs is equal to one. However, when the ratio is greater or less than one that number can change considerably. Zoo Biol 29:638–646, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Chaverri G  Kunz TH 《PloS one》2011,6(12):e28821
Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations.  相似文献   

5.
We examine the variability of riverine fish assemblages in terms of assemblage stability (i.e. variability of numbers of individuals within species over time and variability of assemblage total density), assemblage persistence, and assemblage species richness using data from a 9-yr survey of 27 sites within 18 coastal streams of North-western France. To do so, we test a hypothesized directional model for the expected relationships between environmental variability, assemblage variability, assemblage persistence, and assemblage species richness: 1) environmental variability within a given system is likely to generate variable local population size within this system, thus increasing local assemblages variability; 2) environmental variability should increase extinction rates (or, under constant colonization rates, decrease persistence), because the more population sizes vary within an assemblage, the more likely they are to become zero in some period of time; 3) assemblage variability should reduce assemblage species richness by increasing extinction rates within populations composing these assemblages. Results are compatible with our starting hypotheses and show that assemblage variability increased with environmental variability (i.e. discharge variability), that assemblage persistence decreased with environmental variability, and that species richness decreased with assemblage variability after environmental factors were controlled for. Thus, disturbance regimes, in our case, can alter the stability properties of assemblages and extrinsic determinants of assemblage variability may be an important determinant of assemblage species richness. These results have important conservation and management implications, due to the strong impact of river regulation on flow regimes.  相似文献   

6.
We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition probabilities from susceptible to diseased states are given in terms of the binomial distribution. An expression is given for the probability that any individuals beyond those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large variability in both the total number of infected individuals and in the total duration of the epidemic, even when the variability in number of contacts per day is small. In the case of no recovery, R=infinity, a formal diffusion approximation is obtained for the number infected. The mean for the diffusion process can be approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics. For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the parameters p (the probability of transmission), R, and the number of contacts per day per individual. A scale invariant property is noted for the size of an outbreak in relation to the total population size. Most notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely large differences in the sizes of outbreaks which can occur for small changes in R. These findings have practical applications in controlling the size and duration of epidemics and hence reducing their human and economic costs.  相似文献   

7.
The sunk cost error occurs when individuals persist with a non-optimal course of action because they have already invested time or resources in it. The current study examined the effect of specific experiences on the likelihood of the sunk cost error. Six pigeons were given repeated choices between persisting with and escaping from relatively large fixed ratios. In most conditions escaping was the choice pattern producing the smallest mean response requirement. In Experiment 1, four of six pigeons persisted, committing the sunk cost error. Some subjects continued to persist even when persistence increased the mean number of responses to reinforcement by 99. In Experiment 2, the absolute difference between the mean numbers of responses to reinforcement for persistence and escape was increased even further for these subjects, and the relative cost of persistence was increased. Once escape had been established, pigeons were less likely to commit the sunk cost error in some conditions where they had previously made the error frequently. Together, the results of both experiments show changes in the frequency of the sunk cost error caused by specific experiences, and that persistence is likely more sensitive to its relative than absolute costs.  相似文献   

8.
Gösta Nachman 《Oikos》2000,91(1):51-65
An analytical stochastic metapopulation model is developed. It describes how individuals will be distributed among patches as a function of density-dependent birth, death and emigration rates, and the probability of successful dispersal. The model includes demographic stochasticity, but not catastrophes, environmental stochasticity or variation in patch size and suitability. All patches are equally likely to be colonized by migrants. The model predicts: (a) mean and variance of the number of individuals per patch; (b) probability distribution of individuals per patch; (c) mean number of individuals in transit; and (d) turn-over rate and expected persistence time of a single patch. The model shows that (a) dispersal rates must be intermediate in order to ensure metapopulation persistence; (b) the mean number of individuals per patch is often well below the carrying capacity; (c) long transit times and/or high mortality during dispersal reduce the mean number of individuals per patch; (d) density-dependent emigration responses will usually increase metapopulation size and persistence compared with density-independent dispersal; (e) an increase in the per capita net growth rate can both increase and decrease metapopulation size and persistence depending on whether dispersal rates are high or low; (f) density-independent birth, death, and emigration rates lead to a spatial pattern described by the negative binomial distribution.  相似文献   

9.
Population dynamics are influenced by environmental variability and understanding the abundance and persistence of individuals and populations is a fundamental goal of population ecology. Thus, estimating demographic parameters to identify the factors important for population variability is required to understand temporal and spatial dynamics. The stream-living diurnal frog Hylodes heyeri is endemic to the Atlantic Forest of Brazil in the states of Paraná, São Paulo and Santa Catarina. Here we use capture-mark-recapture methods to estimate survival rates and population size of this Brazilian Torrent Frog in Pico do Marumbi State Park, Paraná. We used CJS models for an open population to estimate apparent survival, capturability and population size in two streams. The number of captures during each session was positively correlated with the minimum weekly temperature. Despite that correlation, the most parsimonious model of survival and capturability was the constant model for both parameters, resulting in a monthly survival rate of 0.38 (95% CI = 0.30–0.46). Thus, only the abundance of the frog differed in the two streams (79 vs. 36), with the population size estimate of 187 individuals. Reproduction is seasonal in the Brazilian Torrent Frog and so the low monthly survival rate suggests that animals move over time rather than die, because 38% month−1 survival should result in <1% of the population remaining after 5 months. Thus, researchers must recognize that populations are labile and individuals often move or are washed downstream during heavy rainfall, generating apparently rapid local turnover that is unlikely to reflect true mortality.  相似文献   

10.
We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be >/=1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches.  相似文献   

11.
The evolution of cooperation requires benefits of group living to exceed costs. Hence, some components of fitness are expected to increase with increasing group size, whereas others may decrease because of competition among group members. The social spiders provide an excellent system to investigate the costs and benefits of group living: they occur in groups of various sizes and individuals are relatively short-lived, therefore life history traits and Lifetime Reproductive Success (LRS) can be estimated as a function of group size. Sociality in spiders has originated repeatedly in phylogenetically distant families and appears to be accompanied by a transition to a system of continuous intra-colony mating and extreme inbreeding. The benefits of group living in such systems should therefore be substantial. We investigated the effect of group size on fitness components of reproduction and survival in the social spider Stegodyphus dumicola in two populations in Namibia. In both populations, the major benefit of group living was improved survival of colonies and late-instar juveniles with increasing colony size. By contrast, female fecundity, female body size and early juvenile survival decreased with increasing group size. Mean individual fitness, estimated as LRS and calculated from five components of reproduction and survival, was maximized for intermediate- to large-sized colonies. Group living in these spiders thus entails a net reproductive cost, presumably because of an increase in intra-colony competition with group size. This cost is traded off against survival benefits at the colony level, which appear to be the major factor favouring group living. In the field, many colonies occur at smaller size than expected from the fitness curve, suggesting ecological or life history constraints on colony persistence which results in a transient population of relatively small colonies.  相似文献   

12.
Cost-effective surveillance strategies are needed for efficient responses to biological invasions and must account for the trade-offs between surveillance effort and management costs. Less surveillance may allow greater population growth and spread prior to detection, thereby increasing the costs of damages and control. In addition, surveillance strategies are usually applied in environments under continual invasion pressure where the number, size and location of established populations are unknown prior to detection. We develop a novel modeling framework that accounts for these features of the decision and invasion environment and determines the long term sampling effort that minimises the total expected costs of new invasions. The optimal solution depends on population establishment and growth rates, sample sensitivity, and sample, eradication, and damage costs. We demonstrate how to optimise surveillance systems under budgetary constraints and find that accounting for spatial heterogeneity in sampling costs and establishment rates can greatly reduce management costs.  相似文献   

13.
Summary By analysis of time budgets the daily energy expenditure in territorial individuals of a Hawaiian honeycreeper (Vestiaria coccinea, Fam. Drepanididae) were estimated during the nonbreeding season and compared to that of nonterritorial individuals. The mean rise in living costs was 2.3 kcal/24 h or 17% of the nonterritorial energy budget. The most costly territorial behavior was advertisement rather than chasing, and total territorial cost was seen to be little affected by the number of intruders or the size of the territory. These results are compared with data on feeding (nonbreeding) territories of other nectar-feeding birds. The suggestion is made that hummingbirds may be more likely to develop nonbreeding territorial behavior in any set of environmental circumstances than are honeycreepers because of relatively lower total cost of advertisement plus chasing.  相似文献   

14.
Dispersal and dormancy are two strategies that allow recolonization of empty patches and escape from kin competition. Because they presumably respond to similar evolutionary forces, it is tempting to consider that these strategies may substitute for each other. Yet in order to predict the outcome of the evolution of dispersal and dormancy, and to characterize the emerging covariation between both traits, it is necessary to consider models where dispersal and dormancy evolve jointly. Here, we analyze the evolution of dispersal and dormancy as a function of direct fitness costs, environmental variation, and competition among relatives. We consider two scenarios depending on whether the rates of dormancy for philopatric and dispersed individuals are constrained to be the same (unconditional dormancy) or allowed to be different (conditional dormancy). We show that only philopatric individuals should enter dormancy, at a rate increasing with increasing rates of local extinction and decreasing population sizes. When dormancy and dispersal evolve jointly, we observe a wide range of evolutionary outcomes. In particular, we find that the pattern of covariation between the evolutionarily stable rates of dispersal and dormancy is molded by the rate of extinction and the local population size.  相似文献   

15.
Species responses are influenced by processes operating at multiple scales, yet many conservation studies and management actions are focused on a single scale. Although landscape-level habitat conditions (i.e., habitat amount, fragmentation and landscape quality) are likely to drive the regional persistence of spatially structured populations, patch-level factors (i.e., patch size, isolation, and quality) may also be important. To determine the spatial scales at which habitat factors influence the regional persistence of endangered Ord's kangaroo rats (Dipodomys ordii) in Alberta, Canada, we simulated population dynamics under a range of habitat conditions. Using a spatially-explicit population model, we removed groups of habitat patches based on their characteristics and measured the resulting time to extinction. We used proportional hazards models to rank the influence of landscape and interacting patch-level variables. Landscape quality was the most influential variable followed by patch quality, with both outweighing landscape- and patch-level measures of habitat quantity and fragmentation/proximity. Although habitat conservation and restoration priorities for this population should be in maximizing the overall quality of the landscape, population persistence depends on how this goal is achieved. Patch quality exerted a significant influence on regional persistence, with the removal of low quality road margin patches (sinks) reducing the risk of regional extinction. Strategies for maximizing overall landscape quality that omit patch-level considerations may produce suboptimal or detrimental results for regional population persistence, particularly where complex local population dynamics (e.g., source-sink dynamics) exist. This study contributes to a growing body literature that suggests that the prediction of species responses and future conservation actions may best be assessed with a multi-scale approach that considers habitat quality and that the success of conservation actions may depend on assessing the influences of habitat factors at multiple scales.  相似文献   

16.
1. The decomposition of population growth rate into contributions from different demographic rates has many applications, ranging from evolutionary biology to conservation and management. Demographic rates with low variance may be pivotal for population persistence, but variable rates can have a dramatic influence on population growth rate. 2. In this study, the mean and variance in population growth rate (lambda) is decomposed into contributions from different ages and demographic rates using prospective and retrospective matrix analyses for male and female components of an increasing common tern (Sterna hirundo) population. 3. Three main results emerged: (1) subadult return was highly influential in prospective and retrospective analyses; (2) different age-classes made different contributions to variation in lambda: older age classes consistently produced offspring whereas young adults performed well only in high quality years; and (3) demographic rate covariation explained a significant proportion of variation in both sexes. A large contribution to lambda did not imply a large contribution to its variation. 4. This decomposition strengthens the argument that the relationship between variation in demographic rates and variation in lambda is complex. Understanding this relationship and its consequences for population persistence and evolutionary change demands closer examination of the lives, and deaths, of the individuals within populations within species.  相似文献   

17.
Population size structure and maximum size of managed sportfish populations are dictated by abiotic, biotic, ecosystem, and anthropogenic influences. In their native ranges of northern Wisconsin, muskellunge (Esox masquinongy) and cisco (Coregonus artedi) are co-adapted cool- and cold-water species where cisco presence may influence population size structure and maximum size of muskellunge. We tested whether muskellunge size structure indices (length-frequency distributions, proportional size distribution), mean length, and mean maximum length of muskellunge differed when cisco were present or absent in Ceded Territory of Wisconsin (CTWI) lakes during 2015–2018. Cisco presence had a positive influence on size structure and mean length of individual muskellunge within populations. In contrast, cisco presence had no influence on the mean maximum length of muskellunge observed in CTWI populations suggesting that other factors may be better predictors of this metric than cisco presence. In cisco lakes, mean muskellunge length was negatively correlated with mean cisco length suggesting that gape limitation may be a factor influencing population size structure and individual growth rates. Therefore, cisco populations with primarily large individuals may be unavailable to muskellunge as forage. Our results suggest that cisco are an important forage species for some aspects of muskellunge population ecology; however, other factors may also contribute to muskellunge population size structure and maximum size outcomes. As such, conservation of remaining cisco populations in Wisconsin is critical because they influence muskellunge population ecology in lakes where the species coexist. Future research is needed to better understand the interactions of cisco, abiotic and biotic factors, and anthropogenic influences on muskellunge growth dynamics.  相似文献   

18.
Cushion plants have been confirmed to be keystone species of alpine ecosystems. However, the adaptive strategies responsible for their recruitment and persistence remain largely unclear. Also, the effect of competition by species already established in surrounding vegetation is not known. We first assessed population size and the frequency distribution of individuals of different size in communities of the keystone cushion Arenaria polytrichoides Edgew. along an elevational gradient in southwestern China. Furthermore, in controlled experiments the effects of soil quality, light availability, and competition by other species on seedling recruitment and survival was tested. At lower elevation individuals were larger (elder), but population size (density) was lower compared to higher elevation; similarly, adults and old individuals were relatively more frequent at low elevation, whereas juvenile and small individuals were more frequent at higher elevations. Seedling recruitment differed depending on soil origin with seeds sown in soils from low elevation having a higher germination percentage and seedling survival when grown without competition. Competition by other species delayed germination but did not influence the final germination percentage, but it increased seedling mortality and reduced their survival. Full light accelerated the germination process, but did not affect final germination percentage and seedling mortality. Results suggest that the recruitment and persistence of A. polytrichoides is strongly affected by competition, whereas temperature and soil quality are less important. We speculate that when populations of cushion A. polytrichoides are likely to be exposed to higher competition due to environmental changes, this species is in danger of being weeded out.  相似文献   

19.
The factors and mechanisms that enhance population persistence in a fragmented habitat and/or under harsh environmental conditions are of significant current interest. We consider the dynamics of a population in an isolated habitat surrounded by an unfavourable environment subject to different behavioural responses between the individuals. We assume that there are two responses available: one of them is aggression in its extreme form, the other is its contrary when an individual takes flight in order to avoid any contact with its conspecific. We show that a behaviourally structured population consisting of individuals with fixed behavioural responses is intrinsically less prone to extinction under harsh environmental condition than a population where the individuals can ‘choose’ between the two given behaviours. We also show that, contrary to an intuitively expected negative impact of aggression on population persistence, the optimal conditions for population persistence are reached when a considerable proportion of the individuals exhibit aggressive behaviour.  相似文献   

20.
Predicting whether individuals will colonize a novel habitat is of fundamental ecological interest and is crucial to conservation efforts. A consistently supported predictor of colonization success is the number of individuals introduced, also called propagule pressure. Propagule pressure increases with the number of introductions and the number of individuals per introduction (the size of the introduction), but it is unresolved which process is a stronger driver of colonization success. Furthermore, their relative importance may depend upon the environment, with multiple introductions potentially enhancing colonization of fluctuating environments. To evaluate the relative importance of the number and size of introductions and its dependence upon environmental variability, we paired demographic simulations with a microcosm experiment. Using Tribolium flour beetles as a model system, we introduced a fixed number of individuals into replicated novel habitats of stable or fluctuating quality, varying the number of introductions through time and size of each introduction. We evaluated establishment probability and the size of extant populations through seven generations. We found that establishment probability generally increased with more, smaller introductions, but was not affected by biologically realistic fluctuations in environmental quality. Population size was not significantly affected by environmental variability in the simulations, but populations in the microcosms grew larger in a stable environment, especially with more introduction events. In general, the microcosm experiment yielded higher establishment probability and larger populations than the demographic simulations. We suggest that genetic mechanisms likely underlie these differences and thus deserve more attention in efforts to parse propagule pressure. Our results highlight the importance of preventing further introductions of undesirable species to invaded sites and suggest conservation efforts should focus on increasing the number of introductions or reintroductions of desirable species rather than increasing the size of those introduction events into harsh environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号