首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The meta-cleavage operon of the TOL plasmid pWW0 of Pseudomonas putida contains 13 genes responsible for the oxidation of benzoate and toluates to Krebs cycle intermediates via estradiol (meta) cleavage of (methyl)catechol. The functions of all the genes are known with the exception of xylT. We constructed pWW0 mutants defective in the xylT gene, and found that these mutants were not able to grow on p-toluate while they were still capable of growing on benzoate and m-toluate. In the xylT mutants, all the meta-cleavage enzymes were induced by p-toluate with the exception of catechol 2,3-dioxygenase whose activity was 1% of the p-toluate-induced activity in wild-type cells. Addition of 4-methylcatechol to m-toluate-grown wild-type and xylT cells resulted in the inactivation of catechol 2,3-dioxygenase in these cells. In the wild-type strain but not in the xylT mutant, the catechol 2,3-dioxygenase activity was regenerated in a short time. The regeneration of the catechol 2,3-dioxygenase activity was also observed in H2O2-treated wild-type cells, but not in H2O2-treated xylT cells. We concluded that the xylT product is required for the regeneration of catechol 2,3-dioxygenase.  相似文献   

2.
Control of catechol meta-cleavage pathway in Alcaligenes eutrophus   总被引:8,自引:6,他引:2       下载免费PDF全文
Alcaligenes eutrophus 335 (ATCC 17697) metabolizes phenol and p-cresol via a catechol meta-cleavage pathway. Studies with mutant strains, each defective in an enzyme of the pathway, showed that the six enzymes assayed are induced by the primary substrate. Studies with a putative polarity mutant defective in the expression of aldehyde dehydrogenase suggested that the structural genes encoding this and subsequent enzymes of the pathway exist in the same operon. From studies with mutant strains that constitutively synthesize catechol 2,3-oxygenase and subsequent enzymes and from the coordination of repression of these enzymes by p-toluate, benzoate, and acetate, it is proposed the catechol 2,3-oxygenase structural gene is situated in this operon (2,3-oxygenase operon). Studies with regulatory mutant strains suggest that the 2,3-oxygenase operon is under negative control.  相似文献   

3.
Structural genes for catechol 2,3-oxygenase (C23O) were cloned from the TOL plasmids pWW5, pWW14, pWW74, pWW84, and pWW88 isolated from Pseudomonas strains of diverse geographical origins. Each pKT230-based C23O+ recombinant plasmid carried a 2.05-kilobase XhoI insert which showed strong homology in Southern hybridizations with the xylE gene from the archetype TOL plasmid pWW0. Fragments were mapped for restriction endonuclease sites and were classified into two closely related groups on the basis of restriction maps. C23O structural genes were located on cloned fragments by a combination of subcloning and site-specific mutagenesis. All five TOL plasmids examined yielded clones whose maps differed from that of xylE of pWW0 by only a single XbaI site, but in addition plasmids pWW5, pWW74, and pWW88 carried a second, homologous C23O gene with seven further restriction site differences. The remaining plasmids, pWW14 and pWW84, carried a second nonhomologous C23O gene related to the second C23O gene (C23OII) of TOL plasmid pWW15 described previously (H. Keil, M. R. Lebens, and P. A. Williams, J. Bacteriol. 163:248-255, 1985). Thus, each naturally occurring TOL plasmid in this study appears to carry genes for two meta cleavage dioxygenases.  相似文献   

4.
Catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida consists of four identical subunits, each containing one ferrous ion. The enzyme catalyzes ring cleavage of catechol, 3-methylcatechol, and 4-methylcatechol but shows only weak activity toward 4-ethylcatechol. Two mutants of catechol 2,3-dioxygenases (4ECR1 and 4ECR6) able to oxidize 4-ethylcatechol, one mutant (3MCS) which exhibits only weak activity toward 3-methylcatechol but retained the ability to cleave catechol and 4-methylcatechol, and one phenotypic revertant of 3MCS (3MCR) which had regained the ability to oxidize 3-methylcatechol were characterized by determining their Km and partition ratio (the ratio of productive catalysis to suicide catalysis). The amino acid substitutions in the four mutant enzymes were also identified by sequencing their structural genes. Wild-type catechol 2,3-dioxygenase was inactivated during the catalysis of 4-ethylcatechol and thus had a low partition ratio for this substrate, whereas the two mutant enzymes, 4ECR1 and 4ECR6, had higher partition ratios for it. Similarly, mutant enzyme 3MCS had a lower partition ratio for 3-methylcatechol than that of 3MCR. Molecular oxygen was required for the inactivation of the wild-type enzyme by 4-ethylcatechol and of 3MCS by 3-methylcatechol, and the inactivated enzymes could be reactivated by incubation with FeSO4 plus ascorbic acid. The enzyme inactivation is thus most likely mechanism based and occurred principally by oxidation and/or removal of the ferrous ion in the catalytic center. In general, partition ratios for catechols lower than 18,000 did not support bacterial growth. A possible meaning of the critical value of the partition ratio is discussed.  相似文献   

5.
An effective family shuffling method using single-stranded DNA   总被引:10,自引:0,他引:10  
Kikuchi M  Ohnishi K  Harayama S 《Gene》2000,243(1-2):133-137
Family shuffling, which is one of the most powerful techniques for in vitro protein evolution, always involves the problem of reassembling the gene fragments into parental gene sequences, because such a process prevents the formation of chimeric sequences. In order to improve the efficiency of hybrid formation in family shuffling, single-stranded DNAs (ssDNAs) were used as templates. The ssDNAs of two catechol 2,3-dioxygenase genes, nahH and xylE, were prepared, the xylE strand being complementary to the nahH strand. When these ssDNAs were digested by DNase I and reassembled, chimeric genes were obtained at a rate of 14%, which was much higher than the rate of less than 1% obtained by shuffling with double-stranded DNAs. Chimeric catechol 2,3-dioxygenases that were more thermally stable than the parental enzymes, XylE and NahH, were obtained by this ssDNA-based DNA shuffling.  相似文献   

6.
Catechol 2,3-dioxygenase (C23O; EC 1.3.11.2), exemplified by XylE and NahH, catalyzes the ring cleavage of catechol and some substituted catechols. C23O is inactivated at an appreciable rate during the ring cleavage of 4-methylcatechol due to the oxidation of the Fe(II) cofactor to Fe(III). In this study, a C23O exhibiting improved activity against 4-methylcatechol was isolated. To isolate this C23O, diverse C23O gene sequences were PCR amplified from DNA which had been isolated from mixed cultures of phenol-degrading bacteria and subcloned in the middle of a known C23O gene sequence (xylE or nahH) to construct a library of chimeric C23O genes. These chimeric C23O genes were then introduced into Pseudomonas putida possessing some of the toluene catabolic genes (xylXYZLGFJQKJI). When a C23O gene (e.g., xylE) is introduced into this strain, the transformants cannot generally grow on p-toluate because 4-methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of C23O. However, a transformant of this strain capable of growing on p-toluate was isolated, and a chimeric C23O (named NY8) in this transformant was characterized. The rate of enzyme inactivation by 4-methylcatechol was lower in NY8 than in XylE. Furthermore, the rate of the reactivation of inactive C23O in a solution containing Fe(II) and ascorbic acid was higher in NY8 than in XylE. These properties of NY8 might allow the efficient metabolism of 4-methylcatechol and thus allow host cells to grow on p-toluate.  相似文献   

7.
Synthesis of enzymes of the 4-hydroxyphenylacetate meta-cleavage pathway was studied in Pseudomonas putida wild-type strain P23X1 (NCIB 9865) and mutant strains which had either structural or regulatory gene mutations. Induction studies with mutant strains each defective in an enzyme of the pathway showed that 4-hydroxyphenylacetate induced the hydroxylase and that 3,4-dihydroxyphenylacetate induced the 2,3-oxygenase, aldehyde dehydrogenase, isomerase, decarboxylase, and hydratase. This showed that the hydroxylase structural gene does not exist in an operon that contains any other structural gene of this meta pathway. Studies of mutant strains that synthesized constitutively the 2,3-oxygenase and subsequent enzymes suggested that the regulation of synthesis of these enzymes was coincident, and, in such strains, the hydroxylase was inducible only. Observations made with a putative polarity mutant that lacked 2,3-oxygenase activity suggested that the structural genes encoding this enzyme and subsequent enzymes of the pathway exist in the same operon. Studies of a regulatory mutant strain that was defective in the induction of the 2,3-oxygenase and subsequent enzymes suggest that the 2,3-oxygenase operon is under positive control.  相似文献   

8.
Mutant derivatives of the TOL plasmid pWW0-161, containing Tn5 insertions in the xylS and xylR regulatory genes of the catabolic pathway, have been identified and characterized. The two genes are located together on a 1.5- to 3.0-kilobase segment of TOL, just downstream of genes of the enzymes of the meta-cleavage pathway. As predicted by a current model for regulation of the TOL catabolic pathway, benzyl alcohol dehydrogenase, a representative enzyme of the upper (hydrocarbon leads to carboxylic acid) pathway, was induced by m-methylbenzyl alcohol in xylS mutant bacteria but not in a xylR mutant, whereas catechol 2,3-oxygenase, a representative enzyme of the lower (meta-cleavage) pathway, was induced by m-toluate in a xylR mutant but not in the xylS mutants. Unexpectedly, however, catechol 2,3-oxygenase was not induced by m-methylbenzyl alcohol in xylS mutants but was induced by benzyl alcohol and benzoate. These results indicate that expression of the TOL plasmid-encoded catabolic pathway is regulated by at least three control elements, two of which (the products of the xylS and xylR genes) interact in the induction of the lower pathway by methylated hydrocarbons and alcohols and one of which responds only to nonmethylated substrates.  相似文献   

9.
Metabolism of arylsulphonates by micro-organisms   总被引:16,自引:6,他引:10       下载免费PDF全文
1. Species of Pseudomonas capable of degrading arylsulphonates and detergents of the alkylbenzenesulphonate type were isolated from sewage and river water. 2. Benzenesulphinate, benzenesulphonate and toluene-p-sulphonate were rapidly degraded by these organisms with the release of the sulphonate group as sulphite; detergent homologues with a chain length up to 16 carbon atoms (4-n-hexadecyl-benzenesulphonate) also released sulphite. Sulphite oxidation to sulphate in the medium can occur non-enzymically. 3. Growth on benzenesulphonate and toluene-p-sulphonate elicited a catechol 2,3-oxygenase, which effected a ;meta' cleavage of the ring. The metabolic route for benzenesulphonate was determined as: benzenesulphonate-->catechol-->2-hydroxymuconic semialdehyde-->formate and 4-hydroxy-2-oxovalerate-->acetaldehyde and pyruvate; the enzymes catalysing these steps were all inducible. 4. Toluene-p-sulphonate was degraded via 2-hydroxy-5-methylmuconic semialdehyde to formate and 4-hydroxy-2-oxohexanoate and the latter was cleaved to propionaldehyde and pyruvate. Propionaldehyde and propionate were oxidized rapidly by toluene-p-sulphonate-grown cells but slowly by fumarate-grown organisms. 5. The specificity of the catechol 2,3-oxygenase induced by the arylsulphonates, towards catechol and the methylcatechols, varied during the purification and suggested that 3-methylcatechol was probably oxidized by a separate enzyme. Detergents of the alkylbenzenesulphonate type also induced a catechol 2,3-oxygenase in these bacteria. 6. A few isolates, after growth on benzenesulphonate, opened the ring of catechol by an ;ortho' route to form cis-cis-muconate. The enzymes to degrade this intermediate to beta-oxoadipate were also present in induced cells.  相似文献   

10.
Catechol oxygenases of Pseudomonas putida mutant strains.   总被引:4,自引:4,他引:0       下载免费PDF全文
Investigation of a mutant strain of Pseudomonas putida NCIB 10015, strain PsU-E1, showed that it had lost the ability to produce catechol 1,2-oxygenase after growth with catechol. Additional mutants of both wild-type and mutant strains PsU-E1 have been isolated that grow on catechol, but not on benzoate, yet still form a catechol 1,2-oxygenase when exposed to benzoate. These findings indicate that either there are separately induced catechol 1,2-oxygenase enzymes, or that there are two separate inducers for the one catechol 1,2-oxygenase enzyme. Comparisons of the physical properties of the catechol 1,2-oxygenases formed in response to the two different inducers show no significant differences, so it is more probable that the two proteins are the product of the same gene. Sufficient enzymes of the ortho-fission pathway are induced in the wild-type strain by the initial substrate benzoate (or an early intermediate) to commit that substrate to metabolism by ortho fission exclusively. A mechanism exists that permits metabolism of catechol by meta fission if the ortho-fission enzymes are unable to prevent its intracellular accumulation.  相似文献   

11.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

12.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS-polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 microM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 microM, while the mutant enzyme loosened substrate inhibition.  相似文献   

13.
Novel family shuffling methods for the in vitro evolution of enzymes.   总被引:10,自引:0,他引:10  
M Kikuchi  K Ohnishi  S Harayama 《Gene》1999,236(1):159-167
It has recently been shown that shuffling of the amino acid sequences of family enzymes allows the generation of improved enzymes. Family shuffling is generally achieved by a DNase I treatment and then by PCR. Shuffling of the xylE and nahH genes, both encoding catechol 2,3-dioxygenases, was carried out by the published method. However, nahH-xylE hybrids were only formed at a very low frequency (less than 1%). Therefore, we developed improved methods for family shuffling by which DNA was cleaved by restriction enzymes instead of by DNase I. With the first improved method, five nahH fragments and five xylE fragments that had been generated by restriction enzyme digestion were subjected to the PCR reactions in two steps, the first being without a primer and the second with a set of primers. This method enabled nahH-xylE hybrid genes to be formed at a high frequency (almost 100%). With the second improved method, nahH and xylE were cleaved by several sets of restriction enzymes, and these digests were then reassembled in two steps. The nahH and xylE DNAs were each cleaved by two (or three) sets of restriction enzymes, and one type of nahH digest and one type of xylE digest were mixed, thus making four (or nine) different mixtures of the nahH and xylE digests. These mixtures were used as templates to carry out PCR without a primer. After the first PCR reaction, all the mixtures were combined, and a second PCR reaction was carried out without a primer. Following these two PCR assembly steps, a third PCR reaction was carried out with two primers to amplify the full-length nahH-xylE hybrid genes. This second method also yielded nahH-xylE hybrids at a frequency of 100%. The degree of recombination of the products with the second method was higher than that with the first method. These methods were used to isolate catechol 2,3-dioxygenases exhibiting relatively high stability at high temperature, one of them being respectively 13- and 26-fold more thermostable than XylE and NahH at 50 degrees C.  相似文献   

14.
Plasmid pRO1957 contains a 26.5-kb BamHI restriction endonuclease-cleaved DNA fragment cloned from the chromosome of Pseudomonas pickettii PKO1 that allows P. aeruginosa PAO1c to grow on toluene, benzene, phenol, or m-cresol as the sole carbon source. The genes encoding enzymes for meta cleavage of catechol or 3-methylcatechol, derived from catabolism of these substrates, were subcloned from pRO1957 and were shown to be organized into a single operon with the promoter proximal to tbuE. Deletion and analysis of subclones demonstrated that the order of genes in the meta cleavage operon was tbuEFGKIHJ, which encoded catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde hydrolase, 2-hydroxymuconate semialdehyde dehydrogenase, 4-hydroxy-2-oxovalerate aldolase, 4-oxalocrotonate decarboxylase, 4-oxalocrotonate isomerase, and 2-hydroxypent-2,4-dienoate hydratase, respectively. The regulatory gene for the tbuEFGKIHJ operon, designated tbuS, was subcloned into vector plasmid pRO2317 from pRO1957 as a 1.3-kb PstI fragment, designated pRO2345. When tbuS was not present, meta pathway enzyme expression was partially derepressed, but these activity levels could not be fully induced. However, when tbuS was present in trans with tbuEFGKIHJ, meta pathway enzymes were repressed in the absence of an effector and were fully induced when an effector was present. This behavior suggests that the gene product of tbuS acts as both a repressor and an activator. Phenol and m-cresol were inducers of meta pathway enzymatic activity. Catechol, 3-methylcatechol, 4-methylcatechol, o-cresol, and p-cresol were not inducers but could be metabolized by cells previously induced by phenol or m-cresol.  相似文献   

15.
A pKT231-based broad-host-range plasmid vector was constructed which enabled regulation of expression of cloned genes in a wide range of gram-negative bacteria. This vector, pNM185, contained upstream of its EcoRI, SstI, and SstII cloning sites the positively activated pm twin promoters of the TOL plasmid and xylS, the gene of the positive regulator of these promoters. Expression of cloned genes was induced with micromolar quantities of benzoate or m-toluate, the inexpensive coinducers of the pm promoters. Expression of a test gene, xylE, which specifies catechol 2,3-dioxygenase, cloned in this vector was tested in representative strains of a variety of gram-negative bacteria. Regulated expression of xylE was observed in most strains examined, and induced levels of enzyme representing up to 5% of total cellular protein and ratios of induced:noninduced levels of enzyme up to a factor of 600 were observed. The level of xylE gene expression in different bacteria tended to be correlated with their phylogenetic distance from Pseudomonas putida.  相似文献   

16.
Rhodococcus rhodochrous strain CTM degrades 2-methylaniline mainly via the meta-cleavage pathway. Conversion of the metabolite 3-methylcatechol was catalysed by an Mr 156,000 catechol 2,3-dioxygenase (C23OI) comprising four identical subunits of Mr 39,000. The corresponding gene was detected by using an oligonucleotide as a gene probe. This oligonucleotide was synthesized on the basis of a partial amino acid sequence obtained from the purified enzyme from R. rhodochrous. The structural gene of C23OI was located on a 3.5 kb BglII restriction fragment of plasmid pTC1. On the same restriction fragment the gene for a second catechol 2,3-dioxygenase, designated C23OII, was found. This gene coded for the synthesis of the Mr 40,000 polypeptide of the Mr 158,000 tetrameric C23OII. More precise mapping of the structural genes showed that the C23OI gene was located on a 1.2 kb BglII-SmaI fragment and the C23OII gene on the adjacent 1.15 kb SmaI fragment. Comprehensive substrate range analysis showed that C23OII accepted all the substrates that C23OI did, but additionally cleaved 2,3-dihydroxybiphenyl and catechols derived from phenylcarboxylic acids. C23OI exhibited highest activity towards methylcatechols, whereas C23OII cleaved unsubstituted catechol preferentially.  相似文献   

17.
18.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

19.
The respective specific activities of catechol 1,2-oxygenase II (catechol 1,2-dioxygenase; EC 1.13.11.1) and muconate cycloisomerase II (chloromuconate cycloisomerase; EC 5.5.1.7) in crude extracts of chlorobenzoate-grown Pseudomonas cells corresponded to about 16 and 11% of the soluble cell protein. High levels of protein synthesis appeared to compensate for a loss in catalytic activity that accompanied evolutionary acquisition of broad substrate specificity required for the enzymes to accommodate halogenated substrates.  相似文献   

20.
Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for meta-cleavage of the aromatic ring. The new primer sets allowed detection of the corresponding genotypes in soil with a detection limit of 10(3)-10(4) or 10(5)-10(6) gene copies g(-1) soil, assuming one copy of the gene per cell. The primer sets were used in PCR to assess the distribution of the catabolic genes in BTEX degrading bacterial strains and DNA extracts isolated from soils sampled from different locations and depths (vadose, capillary fringe and saturated zone) within a BTEX contaminated site. In both soil DNA and the isolates, tmoA-, xylM- and xylE1-like genes were the most frequently recovered BTEX catabolic genes. xylM and xylE1 were only recovered from material from the contaminated samples while tmoA was detected in material from both the contaminated and non-contaminated samples. The isolates, mainly obtained from the contaminated locations, belonged to the Actinobacteria or Proteobacteria (mainly Pseudomonas). The ability to degrade benzene was the most common BTEX degradation phenotype among them and its distribution was largely congruent with the distribution of the tmoA-like genotype. The presence of tmoA and xylM genes in phylogenetically distant strains indicated the occurrence of horizontal transfer of BTEX catabolic genes in the aquifer. Overall, these results show spatial variation in the composition of the BTEX degradation genes and hence in the type of BTEX degradation activity and pathway, at the examined site. They indicate that bacteria carrying specific pathways and primarily carrying tmoA/xylM/xylE1 genotypes, are being selected upon BTEX contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号