首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant cell walls expand considerably during cell enlargement, but the biochemical reactions leading to wall expansion are unknown. McQueen-Mason et al. (1992, Plant Cell 4, 1425) recently identified two proteins from cucumber (Cucumis sativus L.) that induced extension in walls isolated from dicotyledons, but were relatively ineffective on grass coleoptile walls. Here we report the identification and partial characterization of an oat (Avena sativa L.) coleoptile wall protein with similar properties. The oat protein has an apparent molecular mass of 29 kDa as revealed by sodium dodecyl sulfate-polyacrylamide gel eletrophoresis. Activity was optimal between pH 4.5 and 5.0, which makes it a suitable candidate for acid growth responses of plant cell walls. The oat protein induced extension in walls from oat coleoptiles, cucumber hypocotyls and pea (Pisum sativum L.) epicotyls and was specifically recognized by an antibody raised against the 29-kDa wall-extension-inducing protein from cucumber hypocotyls. Contrary to the situation in cucumber walls, the acid-extension response in heat-inactivated oat walls was only partially restored by oat or cucumber wall-extension proteins. Our results show that an antigenically conserved protein in the walls of cucumber and oat seedlings is able to mediate a form of acid-induced wall extension. This implies that dicotyledons and grasses share a common biochemical mechanism for at least part of acid-induced wall extensions, despite the significant differences in wall composition between these two classes of plants.Abbreviations ConA concanavalin A - CM carboxymethyl - DEAE diethylaminoethyl - DTT dithiothreitol - Ex29 29-kDa expansin  相似文献   

2.
Bosch M  Hepler PK 《Planta》2006,223(4):736-745
Sperm delivery in flowering plants requires extensive pollen tube growth through the female sporophytic tissues of the pistil. The apical cell wall emerges as a central player in the control of pollen tube growth, since it provides strength to withstand the internal turgor pressure, while imparting sufficient plasticity to allow cell wall extension through the incorporation of new membrane and wall material. Within this scenario, pectin methylesterases (PMEs; EC 3.1.1.11) emerge as crucial regulators in determining the mechanical properties of pectins, the major component of the apical pollen tube wall. We previously identified NtPPME1, a pollen specific PME from Nicotiana tabacum. Here we show that silencing of NtPPME1 results in a mild but significant decrease of in vivo pollen tube growth while the overall PME activity in pollen is not significantly affected. Although the precise mechanisms responsible for the observed phenotype are not known, it seems likely that the cell must maintain a closely regulated level of PME activity in order to maintain the equilibrium between strength and plasticity in the apical cell wall. A relatively minor disturbance of this equilibrium, as caused by NtPPME1 silencing, compromises pollen tube growth.  相似文献   

3.
Cell enlargement in primary leaves of bean (Phaseolus vulgaris L.) can be induced, free of cell divisions, by exposure of 10-d-old, red-light-grown seedlings to white light. The absolute rate of leaf expansion increases until day 12, then decreases until the leaves reached mature size on day 18. The cause of the reduction in growth rate following day 12 has been investigated. Turgor calculated from measurements of leaf water and osmotic potential fell from 6.5 to 3.5 bar before day 12, but remained constant thereafter. The decline of growth after day 12 is not caused by a decrease in turgor. On the other hand, Instron-measured cell-wall extensibility decreased in parallel with growth rate after day 12. Two parameters influencing extensibility were examined. Light-induced acidification of cell walls, which has been shown to initiate wall extension, remained constant over the growth period (days 10–18). Furthermore, cells of any age could be stimulated to excrete H+ by fusicoccin. However, older tissue was not able to grow in response to fusicoccin or light. Measurements of acid-induced extension on preparations of isolated cell walls showed that as cells matured, the cell walls became less able to extend when acidified. These data indicate that it is a decline in the capacity for acid-induced wall loosening that reduces wall extensibility and thus cell enlargement in maturing leaves.Abbreviations and symbols FC fusicoccin - P turgor pressure - RL red light - WEx wall extensibility - WL white light - P w leaf water potential - P s osmotic potential  相似文献   

4.
Mannoproteins from cell walls of Saccharomyces cerevisiae synthesized at successive stages of the population growth cycle have been solubilized with Zymolyase and subsequently analyzed. The major change along the population cycle concerned a large size mannoprotein material; the size of the newly-synthesized molecules varied from 120,000–500,000 (mean of about 200,000) at early exponential phase to 250,000–350,000 (mean of about 300,000) at late exponential phase. These differences are due to modifications in the amount of N-glycosidically linked mannose residues, since the size of the peptide moiety was 90,000–100,000 at all growth stages and the level of O-glycosylation changed only slightly. After, incubation of the purified walls with concanavalin A-ferritin and subsequent analysis by electron microscopy, labelling was localized at the external and internal faces of the walls. The middle space of these was labelled after digestion of the glucan network with Zymolyase, which demonstrate the presence of mannoproteins in close contact with the structural glucan molecules throughout the wall.Abbreviations BSA bovine serum albumin - Con A concanavalin A - SDS sodium dodecyl sulphate  相似文献   

5.
The filamentous red alga Anotrichium tenue C. Aghard (Naegeli) (formerly Griffithsia tenuis C. Aghard; Baldock, 1976, Aust. T. Bot. 24, 509–593) has large (1–2 mm long), cylindrical, multinucleate cells that exhibit a daily, cyclic redistribution of chloroplasts. Chloroplasts accumulate in the mid-region of each growing cell during the day; consequently, filaments appear banded with a light apical end-band, a dark mid-band and a light basal end-band in each growing cell. Chloroplasts disperse at night so that the bands are no longer visible and the cells appear evenly pigmented. Anotrichium tenue also has a type of cell elongation, known as bipolar band growth, in which new material is added to the microfibrillar part of the wall in bands located at the apical and basal poles of elongating cells. This site of wall growth corresponds to the position of the light-colored end-bands present during the day. Here we examine the structural relationship between the cytoplasmic bands and the wall-growth bands. Our results show that, in addition to the previously described bipolar wall bands, there is a non-microfibrillar wall band in the mid-region of the cell. This wall component apparently branches from near the top of the microfibrillar outer wall and terminates near but not at the bottom of the cell. It contains nodules of sulphated polysaccharide material secreted from a band of vesicles, which co-localize with the chloroplasts in the mid-band. The outer wall appears to enclose the entire cell. Nuclei do not redistribute with the chloroplasts or wall vesicles into the mid-band but remain evenly distributed throughout the cytoplasm. Each wall component grows by a different mechanism. We show that two types of wall growth, diffuse and the bipolar-type of tip growth, occur in the same cell and we propose that the observed segregation of the cytoplasm supports localized growth of the unique inner wall component. Additionally, we show that A. tenue is an excellent model for study of the role and mechanism of cytoplasmic compartmentalization and cell polarity during plant cell growth.We wish to thank Dr. Richard Cloney (University of Washington and Dr. Tom Schroeder (Friday Harbor Laboratories, Friday Harbor, Wash.) for helpful discussions and critical review of this work. We also thank Dr. Susan Waaland (University of Washington) for sharing her original observations on the chloroplast banding phenomenon in Anotrichium tenue. We are grateful to the Friday Harbor Laboratories for the use of their space and facilities. This research was supported by funds from the Washington Sea Grant Program (awarded to J.R.W.) and by the Developmental Biology Training Grant, predoctoral fellowship, National Institutes of Health, No. HD07183 to A.W.S.  相似文献   

6.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

7.
Summary Entomophthora muscae (C.) Fres. can be grownin vitro as protoplasts. Light and electron microscopical studies of thein vitro developed protoplasts have demonstrated the absence of an organized wall over the protoplasmic Con A-positive membrane at all stages of growth. The cytological organization is typical of the Entomophthorales with condensed chromatin in the interphase nuclei and small eccentric metaphase spindles. Long strands of endoplasmic reticulum, microubules and vesicles surrounding the plasmalemma may be involved in maintaining the precise shape ofE. muscae protoplast. Starvation of the fungus induces the formation of hyphal bodies after deposition of Con A- and WGA-positive wall material at the plasmalemma surface.Abbreviations Con A concanavalin A - DH Drosophila cell culture medium - FITC fluorescein isothiocyanate - GLEN glucose-lactal-bumin-yeast extract-NaCl culture medium for protoplasts - HBL hyphal body-like protoplasts - MM Mitsuhashi and Maramorosch' insect cell culture medium - PATAg periodic acid-thiocarbohydrazide-silver proteinate technique - PBN phosphate buffer with NaCl - S spherical protoplasts - WGA wheat germ agglutinin  相似文献   

8.
Jean-Pierre Métraux 《Planta》1982,155(6):459-466
Changes in the uronide, neutral-polysacharide, and cellulose composition of the cell wall ofNitella axillaris Braun were followed throughout development of the internodes and correlated with changes in growth rate. As the cells increased in length from 4 to 80 mm during development, the relative growth rate decreased. Cell wall thickness, as measured by wall density, increased in direct proportion to diameter, indicating that cell-wall stress did not change during elogation. Cell-wall analyses were adapted to allow determination of the composition of the wall of single cells. The total amounts of uronides, neutral sugars and cellulose all increased during development. However, as the growth rate decreased, the relative proportions of uronides and neutral sugars, expressed as percent of the dry weight of the wall, decreased, while the proportion of cellulose increased. The neutral sugars liberated upon hydrolysis ofNitella walls are qualitatively similar to those found in hydrolysates of higher plant cell walls: glucose, xylose, mannose, galactose, arabinose fucose and rhamnose. Only the percentage of galactose was found to increase in walls of mature cells, while the percentage of all other sugars decreased. The rate of apposition (g of wall material deposited per unit wall surface area per hour) of neutral polysaccharides decreased rapidly with decreasing growth rate during the early stages of development. The rate of apposition of uronides decreased more steadily throughout development, while that of cellulose, after an early decline, remained constant until dropping off at the end of the elongation period. These correlations between decreasing growth rate and decreasing rate of apposition of neutral sugars and uronides indicate that synthesis of these cell-wall components could be involved in the regulation of the rate of cell elongation inNitella.  相似文献   

9.
J. Burgess  P. J. Linstead 《Planta》1982,156(3):241-248
Protoplasts of Physcomitrella patens have been grown in continuous electric field of 50 V cm-1, resulting in a predictable pattern of filament emergence. The events preceding the visible formation of a polar axis have been examined by electron microscopy. The first sign of polarity is the formation of a thickened inner wall layer over the potential growth site. Elongation of the filament is preceded by the appearance of a layer of heavily stained amorphous material at the external surface of the thickened wall. This material marks the region of initial extension of the filament, but it is not produced once extension has begun, and further growth of the filament results in the retention of the material as an annular ring at its base. The wall of the filament has a complex thickened structure which is a result of the osmotic conditions under which the protoplasts are grown. These results are discussed in terms of the development of the polar axis.  相似文献   

10.
The concepts of physiological structure of plant axial organ and its main components are discussed. Their physiological meanings, in particular the role of the surface and the xylem proton pumps are highlighted: the former loosens the cell wall via acidification, and the latter produces the driving force for active uptake of water. Theoretical and experimental examination on the validity of the Lock-hart growth equation is reviewed. Development of a new experimental system, perfusible glycerinated hollow cylinder of cowpea hypocotyl, demonstrates the validity of the Lock-hart type mechanical equation even in such anin vitro system. The pH-dependency of both extensibility and yield threshold offer a strong support for the acid growth theory. A molecular model of cell wall extension is proposed on the basis of these results. The importance of growth regulation via control of the cell wall yield threshold is demonstrated as a very economical way, by an analogy with the performance of electron tube of triode type. Also augmentation of the classic acid growth theory is proposed on the basis of Katou's diagram and the Katou-Furumoto's model of active water uptake.  相似文献   

11.
Wu Y  Jeong BR  Fry SC  Boyer JS 《Planta》2005,220(4):593-601
In dark-grown soybean (Glycine max [L.] Merr.) seedlings, exposing the roots to water-deficient vermiculite (w=–0.36 MPa) inhibited hypocotyl (stem) elongation. The inhibition was associated with decreased extensibility of the cell walls in the elongation zone. A detailed spatial analysis showed xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity on the basis of unit cell wall dry weight was decreased in the elongation region after seedlings were transplanted to low w. The decrease in XET activity was at least partially due to an accumulation of cell wall mass. Since cell number was only slightly altered, wall mass had increased per cell and probably led to increased wall thickness and decreased cell wall extensibility. Alternatively, an increase in cell wall mass may represent a mechanism for regulating enzyme activity in cell walls, XET in this case, and therefore cell wall extensibility. Hypocotyl elongation was partially recovered after seedlings were grown in low-w vermiculate for about 80 h. The partial recovery of hypocotyl elongation was associated with a partial recovery of cell wall extensibility and an enhancement of XET activity in the hypocotyl elongation zone. Our results indicate XTH proteins may play an important role in regulating cell wall extensibility and thus cell elongation in soybean hypocotyls. Our results also showed an imperfect correlation of spatial elongation and XET activity along the hypocotyls. Other potential functions of XTH and their regulation in soybean hypocotyl growth are discussed.  相似文献   

12.
Ethylene and auxin both enhance cell elongation growth in the rachis of the frond of Regnellidium diphyllum. Measurements of the stress relaxation modulus of the walls of methanol-killed rachis segments show that both auxin and ethylene cause an increase in cell wall extensibility, that the effects are additive, and that they occur in the presence of hypertonic solutions of mannitol that preclude cell elongation. The results are taken as evidence for the operation of two separate mechanisms for cell wall loosening.Abbreviation IAA indol-3yl-acetic acid  相似文献   

13.
Summary An ultrastructural study of cytokinesis, cell wall ontogenesis, and papilla development/form inCarteria crucifera Korsh. andChloromonas rosae Ettl was undertaken. After typical phycoplast-mediated cytokinesis, wall ontogenesis begins at the level of Golgi apparatus activation and secretion to the outside of the daughter cells of fibrillar wall precursors which self assemble into the typical chlamydomonad wall (sensuRoberts 1974). As wall ontogenesis approaches the flagellar region of the cell, several precisely timed events occur: flagellar apparatus formation, flagellar emergence, protoplasmic extension in the future papilla area underlined by series of parallel aligned microtubules, wall formation (at least the W2–W6 layers), retraction of the protoplasmic extension and loss of underlying microtubules, and final wall modification (gap filling by W1 material) to yield the characteristic wall papilla. The transient cytoplasmic extensions mimic the shape of the future wall papilla and are maintained, at least inCarteria, by underlying microtubules. Structural and developmental properties of the papilla are characterized and phylogenetic implications are discussed.This research was supported by National Science Foundation Grant DEB 78-0554.  相似文献   

14.
L. C. W. Jensen 《Protoplasma》1981,107(3-4):301-317
Summary Elongating caulonemal tip cells ofPhyscomitrium turbinatum were cultivated on mediumcoated cover slips and periodically observed with Nomarski differential interference contrast optics. Tip cells exhibit apical growth and an average growth rate of 27.5 m/h. During cell elongation the nucleus migrates forward in the tip cell, but this movement slowly decreases so that there is a gradual increase in the distance between the nucleus and cell tip. Minimum length cells contain small vacuoles adjacent to the basal wall which coalesce during subsequent cell elongation to form a solitary large basal vacuole.An increase in chloroplasts during cell elongation is due to the presence of a population of proliferating chloroplasts located between the cell tip and the nucleus resulting in a gradient in chloroplast number and shape. The zone of chloroplast proliferation shifts progressively forward during cell elongation from a peri-nuclear position to a region closer to the cell tip. During division of the apical cell a perpendicular metaphase plate is formed. Reorientation movements of the phragmoplast-cell plate during telophase, and early stages of the following interphase produce a 35–40° cross wall. This rotation of the spindle axis positions the daughter nuclei temporarily adjacent to the lateral walls on opposite sides of the cell with the sub-apical nucleus on the side nearest the light source. It subsequently migrates across the cell to become situated on the wall farthest from the light source. Sub-apical cells form branches at the distal (= apical) end of the cell on the lateral wall closest to the light source. Branch development is accompanied by changes in chloroplast shape, number, and position.  相似文献   

15.
H. G. Aach  Sabine Bartsch  V. Feyen 《Planta》1978,139(3):257-260
Protoplasts of Chlorella saccharophila (Krüger) Nadson were obtained by cellulase digestion of the microfibrillar inner compount of the cell wall after the resistant outermost layer had been scratched with sea sand. The absence of the cell wall was demonstrated immunologically, electron microscopically and by staining, thus confirming the protoplastic nature of the treated cells. After transfer to an enzyme-free medium regeneration of a thin cell wall was observed. The regeneration of the cell wall obviously followed the same steps as does the cell wall development of the autospores. At least 50% of the protoplasts were able to form colonies when plated on a suitable agar medium.  相似文献   

16.
Summary Mycorrhization of Picea abies has been achieved, for the first time, with six strains of Suillus grevillei by a new culture method, using activated charcoal paper and liquid medium as a substrate. Mycorrhization of P. abies and Larix decidua was compared, and the process was found to be significantly different in the two tree species. S. grevillei is not incompatible with P. abies, but it forms mycorrhizae more readily with L. decidua. Hyphal growth was clearly stimulated on the surface of roots of Larix but retarded on Picea. A well organized Hartig net was formed with both tree species, but wall protuberances were frequently observed on the outer cell walls of Picea cortex cells when the Hartig net was not fully developed. No conspicuous cell wall reactions occurred in Larix roots. Cell wall protuberances may be comparable to those in transfer cells and are interpreted as an alternative to Hartig net development. Anatomical differences between roots of Larix and Picea, and physiologically active substances such as recognition factors on the root surfaces, are discussed with respect to their responsibility for the different reactions of S. grevillei.  相似文献   

17.
The location of galactomannan on the surface ofSchizosaccharomyces pombe cells was reexamined by scanning electron microscopy by an indirect but specific method using gold markers. The polysaccharide was found on the cell surface and at the end beginning to grow but not on the wall established by division. Galactomannan was also localized onS. pombe thin sections by transmission electron microscopy using the same method. The polysaccharide was found deposited in two layers in the cell wall, i.e. at the periphery of the wall and near the plasmalemma. The septum was also marked but mainly near the plasmalemma. These results indicated that the polysaccharide is elaborated onto the outside of the wall during extension but not during septum formation. When thin sections ofS. pombe were marked with gold granules labeled with wheat germ agglutinin, marking was found in vacuoles but not in the cell wall. This confirmed thatS. pombe cell wall is devoid of chitin.Non-Standard Abbreviations Au gold colloid - RCAI Ricinus communis lectin - SEM scanning electron microscopy - TEM transmission electron microscopy - WGA wheat germ agglutinin  相似文献   

18.
Insertion and fate of the cell wall in Bacillus subtilis   总被引:12,自引:4,他引:8       下载免费PDF全文
Cell wall assembly was studied in autolysin-deficient and -sufficient strains of Bacillus subtilis. Two independent probes, one for peptidoglycan and the other for surface-accessible teichoic acid, were employed to monitor cell surface changes during growth. Cell walls were specifically labeled with N-acetyl-D-[3H]glucosamine, and after growth, autoradiographs were prepared for both cell types. The locations of silver grains revealed that label was progressively lost from numerous sites on the cell cylinders, whereas label was retained on the cell poles, even after several generations. In the autolysin-deficient and chain-forming strain, it was found that the distance between densely labeled poles approximately doubled after each generation of growth. In the autolysin-sufficient strain, it was found that the numbers of labeled cell poles remained nearly constant for several generations, supporting the premise that completed septa and poles are largely conserved during growth. Fluorescein-conjugated concanavalin A was also used to determine the distribution of alpha-D-glucosylated teichoic acid on the surfaces of growing cells. Strains with temperature-sensitive phosphoglucomutase were used because in these mutants, glycosylation of cell wall teichoic acids can be controlled by temperature shifts. When the bacteria were grown at 45 degrees C, which stops the glucosylation of teichoic acid, the cells gradually lost their ability to bind concanavalin A on their cylindrical surfaces, but they retained concanavalin A-reactive sites on their poles. Discrete areas on the cylinder, defined by the binding of fluorescent concanavalin A, were absent when the synthesis of glucosylated teichoic acid was inhibited during growth for several generations at the nonpermissive temperature. When the mutant was shifted from a nonpermissive to a permissive temperature, all areas of the cylinder became able to bind the labeled concanavalin A after about one-half generation. Old cell poles were able to bind the lectin after nearly one generation at the permissive temperature, showing that new wall synthesis does occur in the cell poles, although it occurs slowly. These data, based on both qualitative and quantitative experiments, support a model for cell wall assembly in B. subtilis, in which cylinders elongate by inside-to-outside growth, with degradation of the stress-bearing old wall in wild-type organisms. Loss of wall material, by turnover, from many sites on the cylinder may be necessary for intercalation of new wall and normal length extension. Poles tend to retain their wall components during division and are turned over much more slowly.  相似文献   

19.
Yamamoto M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,226(4):917-927
Non-flagellated vegetative green algae of the Trebouxiophyceae propagate mainly by autosporulation. In this manner, the mother cell wall is shed following division of the protoplast in each round of cell division. Binary fission type Nannochloris and budding type Marvania are also included in the Trebouxiophyceae. Phylogenetic trees based on the actin sequences of Trebouxiophyceae members revealed that the binary fission type Nannochloris bacillaris and the budding type Marvania geminata are closely related in a distal monophyletic group. Our results suggest that autosporulation is the ancestral mode of cell division in Trebouxiophyceae. To elucidate how non-autosporulative mechanisms such as binary fission and budding evolved, we focused on the cleavage of the mother cell wall. Cell wall development was analyzed using a cell wall-specific fluorescent dye, Fluostain I. Exfoliation of the mother cell wall was not observed in either N. bacillaris or M. geminata. We then compared the two algae by transmission electron microscopy with rapid freeze fixation and freeze substitution; in both algae, the mother cell wall was cleaved at the site of cell division, but remained adhered to the daughter cell wall. In N. bacillaris, the cleaved mother cell wall gradually degenerated and was not observed in the next cell cycle. In contrast, M. geminata daughter cells entered the growth phase of the next cell cycle bearing the mother and grandmother cell walls, causing the uncovered portion of the plane of division to bulge outward. Such a delay in the degeneration and shedding of the mother cell wall probably led to the development of binary fission and budding.  相似文献   

20.
S. Levy 《Protoplasma》1991,163(2-3):145-155
Summary The dynamic changes in microfibril architecture in the internode cell walls of the giant unicellular algaNitella translucens were studied during cell expansion. Thin section electron microscopy in conjunction with mild matrix polysaccharide extraction techniques revealed three distinct architectural zones in the walls of fully grown cells. These zones were related to distinct phases of growth by monitoring changes in cell wall architecture of internodes during active cell expansion. The initial microfibril deposition before the onset of active cell growth is helicoidal. A helicoid is a structurally complex but ordered arrangement of microfibrils that has been detected increasingly often in higher plant cell walls. During active cell elongation microfibrils are deposited transversely to the direction of cell elongation as shown in earlier studies by birefringence measurements in the polarizing microscope. The gradual decline in cell elongation corresponds with a final helicoidal deposition which continues after cell expansion ceases entirely.The continual presence of the initial helicoidal zone in the outer wall region during the whole growth process suggests that these microfibrils do not experience strain reorientation and are continually reorganized, or maintained, in a well ordered helicoidal arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号