首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Gamma-hydroxybutyric acid is a neuroactive compound which has been found to be a normal constituent of mammalian brain. The present report characterized enzymatic activity in brain forming gamma-hydroxybutyrate (GHB) from succinic semialdehyde (SSA). When NADPH served as cofactor, whole brain homogenate was capable of forming nearly 300 nmol GHB/min/g brain when enzyme activity was measured at 37°C. GHB production was significantly less (50%) when NADH was the cofactor. A regional localization of these activities indicated that the cerebellum and septal area contained the highest capacity to form GHB in the presence of NADPH; intermediate to high activity was found in the cortex, medulla, superior colliculus and corpus striatum; low activity was present in the inferior colliculus, thalamus, pons, hippocampus, substantia nigra and hypothalamus. Activity in the presence of NADH was rather evenly distributed with the exceptions of the cerebellum and inferior colliculus, which contained high and low activity respectively. Both NADPH- and NADH-dependent activities were found primarily in the cytosol. Pentobarbital inhibited enzyme activity and enzyme activity was differentiated from lactic dehydrogenase and alcohol dehydrogenase by use of specific inhibitors. In addition, mixed substrate experiments and kinetic analysis provided evidence for the presence of two reversible NADPH-dependent enzymes capable of producing GHB from SSA.  相似文献   

2.
Regional Distribution of Catalase in the Adult Rat Brain   总被引:6,自引:3,他引:3  
Catalase activity was measured in 11 areas of perfused adult rat brain. The hypothalamus and substantia nigra contained the highest activities. The corpus callosum. a white-matter structure, contained intermediate activity. The caudate-putamen and frontal cortex contained the lowest activities. Regional catalase bears some relationship to the reported distribution of microperoxisomes, but considerable activity is present in areas with few microperoxisomes. Catalase may function as one of the systems detoxifying H2O2 formed in CNS amine metabolism.  相似文献   

3.
Taurine Levels in Discrete Brain Nuclei of Rats   总被引:7,自引:1,他引:6  
Concentrations of taurine have been measured in 44 microdissected rat brain nuclei or areas. Taurine is ubiquitously present and distributed unevenly in the rat brain: the ratio of the highest (pyriform cortex) to lowest (midbrain reticular formation) concentrations is 4.7:1. High taurine levels were found in cerebral cortical areas, caudate-putamen, cerebellum, median eminence, and supraoptic nucleus. Acute pain stress reduced taurine levels in the hypothalamus and the lower brainstem nuclei but not in cortical areas. Increased locomotor and behavioral activities following a high dose of amphetamine elevated taurine concentrations significantly in the substantia nigra and locus ceruleus.  相似文献   

4.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

5.
The aim of the study was to investigate neurochemical changes in a kainic acid (KA; 10 mg/kg, s.c.)-induced spontaneous recurrent seizure model of epilepsy, 6 months after the initial KA-induced seizures. The neuronal markers of cholinergic and gamma-aminobutyric acid (GABA)ergic systems, i.e. choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) activities, and a marker for neuropeptide, i.e. level of somatostatin, have been investigated. The brain regions investigated were the hippocampus, amygdala/piriform cortex, caudate nucleus, substantia nigra and the frontal, parietal, temporal and occipital cortices. Six months after KA injection, reduced ChAT activity was observed in the amygdala/piriform cortex (47% of control; p<0.001), increased ChAT activity in the hippocampus (119% of control; p<0.01) and normal ChAT activity in the other brain regions. The activity of GAD was significantly increased in all analysed cortical regions (between 146 and 171% of control), in the caudate nucleus (144% of control; p<0.01) and in the substantia nigra (126% of control; p<0.01), whereas in the amygdala/piriform cortex, the GAD activity was moderately lowered. The somatostatin level was significantly increased in all cortical regions (between 162 and 221% of control) as well as in the hippocampus (119% of control), but reduced in the amygdala/piriform cortex (45% of control; p<0.01). Six months after KA injection, the somatostatin:GAD ratio was lowered in the amygdala/piriform cortex (49% of control) and in the caudate nucleus (41% of control), whereas it was normal in the hippocampus and moderately increased in the cortical brain regions. A positive correlation was found between seizure severity and the reduction of both ChAT activities and somatostatin levels in the amygdala/piriform cortex. The results show a specific pattern of changes for cholinergic, GABAergic and somatostatinergic activities in the chronic KA model for epilepsy. The revealed data suggest a functional role for them in the new network that follows spontaneous repetitive seizures.  相似文献   

6.
The activity of the dipeptidyl carboxypeptidase, angiotensin converting enzyme, was assayed in several brain regions of patients dying with Alzheimer's disease and compared to that of appropriately age-matched controls. Enzyme activity was found to be elevated by 44% and 41% in the medial hippocampus and parahippocampal gyrus, respectively, and by 27% and 29% in the frontal cortex (area 10 of Brodman) and caudate nucleus, respectively, in Alzheimer's disease patients. Converting enzyme activity did not differ from controls in the nucleus accumbens, substantia nigra, temporal cortex, anterior or posterior hippocampus, amydgala, and septal nuclei.  相似文献   

7.
Effect of tannoid principles emblicanin A, emblicanin B, punigluconin, and pedunculagin of E. officinalis was assessed on chronic unpredictable footshock-induced stress-induced perturbations in oxidative free radical scavanging enzymes in rat brain frontal cortex and striatum. Chronic stress, administered over a period of 21 days, induced significant increase in rat brain frontal cortical and striatal superoxide dismutase (SOD) activity, concomitant with significant reduction in catalase (CAT) and glutathione peroxidase (GPX) activity. The changes in the enzyme activities was accompanied by an increase in lipid peroxidation, in terms of augmented thiobarbituric acid-reactive products. Administration of Emblica tannoids (10 and 20 mg, po) for 21 days, concomitant with the stress procedure, induced a dose-related alteration in the stress effects. Thus, a tendency towards normalization of the activities of SOD, CAT and GPX was noted in both the brain areas, together, with reduction in lipid peroxidation. The results indicate that the reported antistress rasayana activity of E. officinalis may be, at least partly due to its tendency to normalize stress-induced perturbations in oxidative free radical scavenging activity, in view of the postulate that several stress-induced diseases, including the process of aging, may be related to accumulation of oxidative free radicals in different tissues.  相似文献   

8.
The age-related modifications of the participants to the cerebral enzymatic antioxidant system (superoxide dismutase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase) were evaluated in four brain regions from male Wistar rats aged 5, 10, 15, 20, 25, 30, and 35 months. Both the specific enzyme activity and the profile of any enzyme tested markedly differ with age according to the region examined: parieto-temporal cortex, caudate-putamen, substantia nigra and thalamus. This inhomogeneous age-related profile of enzyme activities could explain both the controversial data of literature and the different regional vulnerability of the brain tissue to damage with aging. In rats aged 10, 20, or 30 months, the chronic i.p. treatment for two months with papaverine or ergot alkaloids (dihydroergocristine, dihydroergocornine, dehydroergocriptine) suggests that the antioxidant enzyme activities may be influenced according to the agent utilized, the brain region tested, and the age of the animal. In any case, small differences in the drug structure support marked differences in the type and extent of the intervention on the antioxidant enzymatic system.  相似文献   

9.
The free radical scavenging activity of the Japanese herbal medicine, Toki-Shakuyaku-San (TJ-23; TSUMURA & Co., Tokyo, Japan), was examined using electron spin resonance (ESR) spectrometry. TJ-23 scavenged 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), superoxide (O2 ), and hydroxyl radicals (·OH) dose-dependently. It also diminished carbon centered radicals (·C) generated by oxidative stress and inhibited thiobarbituric acid-reactive substances (TBARS) formation in mouse cortex homogenate. In addition, the effect of TJ-23 on the concentration of neurotransmitters and TBARS formation, and superoxide dismutase (SOD) activity in the cortex, hippocampus and striatum of the aged rat brain was studied. The concentrations of the metabolites of monoamines, glutamate and glutamine were decreased by 4 weeks of oral administration of TJ-23. The SOD activity of mitochondrial fraction was increased and TBARS formation was significantly suppressed. These results suggest that TJ-23 has an antioxidant action and would have a prophylactic effect against free radical-mediated neurological diseases associated with aging.  相似文献   

10.
Regional Distribution of Glutathione Peroxidase in the Adult Rat Brain   总被引:9,自引:8,他引:1  
Glutathione peroxidase activity was measured in 10 areas of perfused adult rat brain with the use of a fluorometric assay coupled to NADPH oxidation. The caudate-putamen and the substantia nigra had the highest activities. Cortical areas and several nuclear areas had somewhat lower activity. Activity was lowest in a white matter structure (corpus callosum). High activity of glutathione peroxidase may be related to the need to reduce hydrogen peroxide arising in the course of monoamine metabolism.  相似文献   

11.
Abstract: The activities of the enzymes of the GABA system, glutamate decarboxylase (GAD) and GABA-transaminase, were measured in discrete regions of the rabbit brain before the onset and during the course of sustained epileptiform seizures induced by the vitamin B6, analogue methoxypyridoxine (MP). GAD activities were measured in a reaction mixture alternatively containing the cofactor pyridoxal-5′-phosphate (PLP) in excess or containing no PLP (holoenzyme of GAD). A comparison between these two estimations showed that the apoenzyme of GAD is only partially saturated with cofactor and that the degree of saturation varied from brain area to brain area, being highest in cerebellar cortex and lowest in substantia nigra. Holoenzyme activity fell steeply after administration of 100 mg/kg MP. The regional degree of enzyme inhibition by MP was a function of the saturation of the apoenzyme with cofactor; i.e., a low rate of saturation resulted in a high degree of inhibition, and vice versa. That GAD from the regio inferior of the hippocampus did not fit into the scheme (strong inhibition is present although the degree of saturation is high) is discussed in view of the role of the hippocampus in seizure genesis and generalization. Inhibition of GAD activity by MP was completely reversible in vitro by excess PLP. Before the onset of seizures but not during their course, apoenzyme activity surpassed control levels. This preictal activation is significant in regio inferior of hippocampus, in superior colliculus, and in cerebellar cortex. GABA-transaminase activities were not significantly altered. The present study demonstrates that only investigation during the preictal period and in regional brain areas can reveal changes specific for the drug and perhaps representing the cause for seizure development, without being masked by additional alterations resulting from the severe functional and metabolic derangement during the ictal events. Thereby, it was disclosed that a decrease in vivo in the level of the enzyme product, GABA, is able to activate GAD.  相似文献   

12.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

13.
Abstract: Electrolytic lesions made in the medial septum of the rat brain caused an 80% decrease in the activity of choline acetyltransferase and a 33% reduction in ATP-citrate lyase activity in the synaptosomal fraction from the hippocampus. Decreases in the activities of the two enzymes in the cytosol (S3) fraction were 70 and 13%, respectively. The activities of pyruvate dehydrogenase, citrate synthase, acetyl-CoA synthase, and carnitine acetyltransferase in crude hippocampal homogenates and in subcellular fractions were not affected by septal lesions. The data indicate that ATP-citrate lyase is linked to the septal-hippocampal pathway and that the enzyme is preferentially located in cholinergic nerve endings that terminate within the hippocampus.  相似文献   

14.
The metabolism of GABA and other amino acids was studied in the substantia nigra, the hippocampus and the parietal cortex of rats following microinjections of GAMMA-vinyl-GABA during status epilepticus induced by lithium and pilocarpine. GABA metabolism showed striking regional variations. In controls, both GABA concentration and rate of GABA synthesis were highest in the substantia nigra and lowest in cortex, as expected. In substantia nigra, status epilepticus resulted in a 2 1/2 fold decline in the rate of GABA synthesis and in a 307% increase in the turnover time of the GABA pool. In hippocampus, the rate of GABA synthesis was not altered significantly, but the turnover time of the GABA pool was 284% of controls, and the size of that pool increased to 208% of controls. By contrast, in cortex, where seizure activity is limited in this model, the rate of GABA synthesis increased to 230% of controls while pool size and turnover time did not change. Aspartate concentration decreased in all three brain regions. These data suggest that the observed reduction of the rate of GABA synthesis in substantia nigra could play a key role in seizure spread in this model of status epilepticus.Special Issue dedicated to Claude Baxter.  相似文献   

15.
The enzymatic activities of two "key" enzymes of the glycolytic pathway, pyruvate kinase and lactic dehydrogenase, were studied in seven areas of the brain in male adult rats in states of pharmacologically induced hyper and hypothyroidism. The brain areas were: anterior cortex, adenohypophysis, hypothalamus, amygdaline nucleus, septum, hippocampus and cerebellum. In T3 treated animals, pyruvate kinase activity showed significant increase in all the areas studied while lactic dehydrogenase activity decreased. In propyl-thiouracil treated animals these enzyme activities showed no significant variations from those in animals of the control group.  相似文献   

16.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

17.
Adult beagle dogs of either sex were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-HCl (2.5 mg/kg, i.v.) alone or after pretreatment with pargyline (5.0 mg/kg, s.c., twice), with pargyline alone, or were uninjected. Groups were killed 2 h, 3 weeks, or 3 months after injection, and several brain areas were assayed for biogenic amines and their synthetic and degradative enzymes. MPTP caused a massive and permanent loss of striatal dopamine, tyrosine hydroxylase, and 3,4-dihydroxyphenylalanine decarboxylase activities and the loss of cells within the substantia nigra pars compacta. Dopamine and norepinephrine also were depleted to various degrees in cortex, olfactory bulb, and hypothalamus; however, dopamine beta-hydroxylase activity in cortex was normal. There was no cell loss in the ventral tegmental area or locus ceruleus. The activities of monoamine oxidase (MAO)-A and MAO-B in cortex and caudate were not affected by MPTP. Despite a permanent loss of the nigrostriatal system, the dogs exhibited only a transient hypokinesia lasting 1-2 weeks. Pargyline pretreatment prevented the loss of striatal dopamine and cells from the substantia nigra, but did not prevent a prolonged but reversible decrease in the concentration of dopamine metabolites. It is argued that this apparent inhibition of MAO is due not to suicide inactivation of the enzyme by MPTP, but to reversible inhibition by accumulation of the pyridinium metabolite, 1-methyl-4-phenylpyridinium, selectivity in aminergic terminals.  相似文献   

18.
A V Sergutina 《Tsitologiia》1991,33(12):67-72
Quantitative cytochemical methods in functionally different rat brain formations (sensomotor cortex, visual cortex, nucleus caudatus, hippocampus) showed the peculiarities of the effect of tuftsin on the activity of some enzymes (the oxidative, neurotransmitter and protein metabolism enzymes) 15 min and 3 days after its single administration. No changes of activity of neurotransmitter metabolism enzymes (monoamine oxidase, acetylcholinesterase) were registered cytochemically. The specificity of the neuro-tropical effect of tuftsin on protein (activity of aminopeptidase and acid phosphatase) and oxidative (activity of glutamate dehydrogenase and glucose-6-phosphate dehydrogenase) metabolism in different functional brain systems is discussed.  相似文献   

19.
In rabbits, generalized seizures were induced by methoxypyridoxine, and changes in amino acid concentrations of 15 brain regions were investigated before seizure onset and during the course of sustained epileptiform activity. As previously reported, gamma-aminobutyric acid (GABA) concentration decreased preictally in most regions. At the same time, taurine level was elevated in the hypothalamus, thalamus, hippocampus, caudatum, and frontal cortex. After 90 min of seizures, it was significantly decreased in the hypothalamus, periaqueductal grey, substantia nigra, frontal cortex, and cerebellum. Glycine content was reduced preictally only in the substantia nigra; after seizure onset its concentration rose in all brain areas. Glutamate content in the frontal cortex decreased before seizure onset; after 1.5 h of seizures, its concentration in cerebellum, caudatum, and hippocampus was reduced. Aspartate level was decreased in most areas after sustained seizures; in putamen, however, it was elevated. In contrast, glutamine content increased preictally in the superior colliculus and in all brain areas by approximately 200% after 90 min of seizures. Alanine and valine content also rose markedly in most brain areas after prolonged seizures, and threonine showed the same tendency. The single brain regions were observed to respond to methoxypyridoxine in highly individualistic ways. For example, the glycine content of the substantia nigra, which is believed to utilize this amino acid as a neurotransmitter, decreased preictally. The potential importance of the superior colliculus in seizure induction is considered in view of the early rise in glutamine level. The antagonistic preictal behavior of taurine and GABA is discussed with respect to synthesis, uptake from the blood, and antiepileptic properties.  相似文献   

20.
We determined the activities of selected enzymes involved in carbon metabolism in free-living cells of Rhizobium tropici CFN299 grown in minimal medium with different carbon sources and in bacteroids of the same strain. The set of enzymatic activities in sucrose-grown cells suggests that the pentose phosphate pathway, with the participation of the Entner-Doudoroff pathway, is probably the primary route for sugar catabolism. In glutamate- and malate-grown cells, high activities of the gluconeogenic enzymes (phosphoenolpyruvate carboxykinase, fructose-6-phosphate aldolase, and fructose bisphosphatase) were detected. In bacteroids, isolated in Percoll gradients, the levels of activity for many of the enzymes measured were similar to those of malate-grown cells, except that higher activities of glucokinase, glucose-6-phosphate dehydrogenase, and NAD-dependent phosphogluconate dehydrogenase were detected. Phosphoglucomutase and UDP glucose pyrophosphorylase showed high and constant levels under all growth conditions and in bacteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号