首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In severely injured liver, stem cells give rise to progeny that tend to replace lost hepatocytes. Neoductular reaction appears as an inherent stage of liver reconstruction following severe damage caused by different pathological mechanisms. Few ultrastructural types of progenitor cells have been described, and some molecular phenotypes of progenitor stages have been characterized, but the details of the differentiation process are largely unknown. We prepared for light and electron microscopy examination human liver from biopsies of patients with chronic active hepatitis, and rat liver with allyl alcohol-induced periportal necrosis. We found that progenitor neoductular cells acquire the hepatocytic polarity pattern during a multi-step process apparently involving cell migration and dissolution of neoductular basement membrane. An intermediate stage with "mixed" ductular and hepatocytic polarity was described.  相似文献   

2.
Synopsis Intracellular diffusion properties and enzyme activities in single living cells can be analysed by means of fluorogenic substrates that diffuse into the cells where they are converted into a fluorescent product by an enzymic reaction. The reaction-kinetic analysis of this process as a system of consecutive reactions provides information on the diffusion of the substrate into the cells, on intracellular enzyme activities and on the efflux of the fluorescent product. Separation of diffusion and enzyme-mediated processes is obtained by inducing specific changes of the cellular membrane using gramicidin D. A model for the functional interpretation of the experimental findings is proposed. Application of this method as a viability test for freshly prepared and frozen platelets is discussed.Paper given at the Royal Microscopical Society's European Histochemistry Meeting at Nottingham in September 1975.  相似文献   

3.
Activities of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD) in Monopterus gonads were studied at different sexual phases during natural sex reversal. Before sexual transformation, positive reactions for 3β-HSD in the follicular epithelium were found in the granulosa cells of some large, maturing follicles in some females during the breeding season. Weak reaction for this enzyme was also detected in some scattered interstitial cells found occasionally in some ovaries. At the intersexual and the male phases, intense 3β-HSD activities were demonstrated exclusively in the interstitial Leydig cells. No 17β-HSD activities were observable in the gonads at any stage of development. The reaction intensity of 3β-HSD in the interstitial cells exhibited a marked increase during the process of sex change from female to the intersexual and the male phases and there is a definite correlation with the density and nuclear size of these cells. It is concluded that in Monopterus , the granulosa cells in the ovary and the interstitial cells of the intersexual and male gonads are the major sites for the biosynthesis of oestrogens and androgens, respectively, and that the intensive development of interstitial tissue with increasing steroidogenic enzyme activities at the intersexual and male phases was directly related to the increase in androgen production in vitro reported previously. The occasional presence of some 3β-HSD positive interstitial cells in the ovary suggests that interstitial cell development might precede testicular lobule formation during natural sex reversal.  相似文献   

4.
The effect of the internal diffusion and electrical surface charge on the overall rate of a reaction catalyzed by an enzyme immobilized on a porous medium are examined. Effectiveness factors have been calculated which compare the global reaction rate to that existing in the absence of the internal diffusion and/or the electrical field. The surface charge, assumed to arise from the dissociation equilibria of the acidic and basic surface groups of the enzyme, generates an electrical double layer at the pore surface. The double-layer potential is governed by the Poisson-Boltzmann equation. It is shown that the diffusion potential can be characterized by a modulus which depends upon the surface reaction rate, the charges and diffusivities of the substrate and products, the ionic strength, and the pore dimensions. The flux of a charged species in the pore occurs under the influences of the concentration gradient and the electrical potential gradient. The governing equations are solved by an iterative numerical method. The effects of pH, enzyme concentration, and substrate concentration on the rates of two different hydrolysis reactions catalyzed by immobilized papain are examined. The release of H(+) in one of the reactions causes the lowering of internal pH, and also a constancy of the internal pH when the external pH in creases beyond a certain value. The latter reaction also shows a maximum in the reaction rate with respect to enzyme concentration. The reaction not involving H(+) as a product shows a maximum in the reaction rate with respect to external pH, but a monotonic increase in the reaction rate as the enzyme concentration increases.  相似文献   

5.
A class of systems is characterized by the asymmetrical distribution of a sink and a source reaction, the asymmetry of the global chemical equation (energy liberation) and by an asymmetrical one-wave space profile. These systems belong to the family of primary chemical cells and can deplete and enrich the media they separate. A “ one way ” transport-reaction chain is needed for specific “ real ” active transport. A two enzyme model of this class is described in which the spatial asymmetry is due to a (diffusive) pH gradient; this distribution of “ potential ” enzyme activities is called the “ functional structure ”. Equal potential enzyme activities and absence of reactive back action on local pH are assumed in the “ square model ” version of the pump. Analytical expressions of the enzymatic diffusion reactions are derived for zero and first order kinetics, i.e. in function of substrate concentrations. Tables of equations are presented. The intrinsic properties of the pump are characterized by (dimensionless) transport reaction parameters, (membrane composition); the “ potential ” activity is controlled by the pH gradient; the “ effective ” pumping is also a function of the substrate concentrations on the boundaries.  相似文献   

6.
 Ultrastructural studies of rare and small cellular lesions in pathologically altered tissue are difficult to perform by applying conventional electron microscopic preparation. The search for lesions, often consisting of only a few cells in randomly obtained small specimen blocks, is time consuming and often without success. The methodological requirements for comparative enzyme cytochemical and morphological studies, i.e., preservation of both enzyme activity and ultrastructure, are divergent. By processing large native cryostat sections for electron microscopy, small preneoplastic focal lesions were successfully targeted in liver and kidney. Glucose-6-phosphatase, alkaline phosphatase, acid phosphatase, catalase, and cytochrome c oxidase activities were distinctly localized to endoplasmic reticulum, canalicular membrane, lysosomes, peroxisomes, and mitochondria, respectively, in the morphologically altered cells. Fixation of serial cryostat sections and enzyme reactions were both carried out through a semipermeable membrane except those for cytochrome c oxidase, which was demonstrated after fixation through the membrane by floating the section in incubation medium containing cytochrome c. Thereafter, the sections were flat embedded and polymerized between epoxy resin disks and aluminum dishes fitting exactly together. The objects of interest were identified in the light microscope, cut out, and reembedded in reversed gelatine capsules. By using this technique an ultrastructural preservation was achieved similar to that seen after immersion fixation. The enzyme activities were clearly localized without diffusion of the reaction product or unspecific deposits. The procedure permits precise targeting and complex studies of rare and small lesions, and opens new perspectives for the use of cryo-preserved tissue. Accepted: 10 March 1998  相似文献   

7.
The direct one-step synthesis of L-phenylalanine methyl ester in an organic-aqueous biphasic system using phenylalanine ammonia lyase (E.C.4.3.1.5, PAL) containing Rhodotorula glutinis yeast whole cells was reported earlier. We report here further optimization of this biotransformation using isolated PAL, when the lyophilized enzyme is treated with different water miscible and water immiscible organic solvents. Use of isolated PAL enzyme is advantageous in overcoming diffusion barriers encountered when using PAL containing R.glutinis whole cells, and resulted in increased product yield due to better interaction of enzyme with the substrate. Among the water miscible solvents, ethanol treated and methanol-treated enzymes supported maximum PAL forward and reverse activities; respectively. In the water immiscible solvents category, heptane-treated enzyme exhibited maximal activity for both PAL forward and reverse reactions. PAL activity obtained with enzyme specimens treated with methanol, ethanol, and heptane varied in the range of 91–99% of that observed in aqueous buffer medium for the forward reaction; and 89–95% for the reverse reaction. n-butanol,acetone, and benzene were found to have a inhibitory effect on PAL enzyme, in that, it resulted in only 31–33% activity of that obtained with aqueous solution. Raman spectroscopy was used to monitor amide I and II bands which are sensitive to changes in the secondary structure of proteins. No changes in structure could be detected from the analyses of AI and AII bands of PAL spectra. This data obtained for PAL, a tetramer, could be significant in predicting how solvent interactions affect the structure and function of multimeric proteins and enzymes in nonaqueous media.  相似文献   

8.
The distribution and activities of phosphatases and oxidative enzymes have been determined with the help of histochemical methods in the kidney of the Prussian Carp, a stenohaline freshwater-fish. In addition to fish maintained in freshwater aquaria, a group of the animals used has been adapted to seawater of moderate salinity. The following pattern of enzyme reaction intensities has been observed in the various kidney structures: Strong reactions of alkaline phosphatase in the nephron are confined to the glomerular capillary convolute and the brush border of proximal segments. Equally enzyme activities are observed in the connective tissue sheath of the collecting duct -- archinephric duct system. Acid phosphatase can be detected in all segments of the nephronic tubule, strong activities are found in the proximal segment (P I), in the epithelium of the archinephric duct, and, especially, in the interstitial tissue. ATPase reacts strongly positive in epithelial cells of the distal tubule and the collecting duct -- archinephric duct system. ATPase reactions are inhibited by Ouabain, and therefore can be regarded as reactions of Na--K-ATPase. Mitochondrially bound oxidative enzymes, connected with the citric acid cycle and the respiratory chain, show very strong reaction intensities in the distal tubule and the collecting duct- archinephric duct system, while the glomeruli generally exhibit negative reactions. Lactate -- and malate dehydrogenases are found to react weakly to negatively throughout the whole kidney. Maintenance in seawater does not deeply affect the enzyme pattern of the kidney of the Prussian carp, with exception of some oxidative enzymes, reacting weaker in the distal tubule and the collecting duct-archinephric duct system. In addition, the epithelial cells of the archinephric duct of seawater adapted fish show a marked apical localization of reaction products for these enzymes. Possible relations between enzyme histochemistry and fish kidney physiology are discussed, in connection with comparative aspects of the enzyme histochemistry of the vertebrate kidney. A short review of normal histology and function of the kidney of the Prussian carp is added.  相似文献   

9.
Catalytic reactions performed with enzymes localized in lipid vesicles or in whole cells represent a new, promising approach in biocatalysis. The delivery of different substrates into these micro- or nano-'reactors' requires a sufficient permeability of lipid membranes. To increase the permeability of lipid bilayers, one may use different membrane-active peptides, including peptaibols. In the present study, the trypsin-catalyzed hydrolysis of N(alpha)-benzoyl-L-arginine-para-nitroanilide (BAPA; 1) was studied in a phospholipid vesicular system made of phosphatidylcholine (POC), in the presence of the peptaibols alamethicin (ALM) or zervamicin IIB (ZER). Two different manners of compartmentalization of substrate and enzyme (enzyme- vs. substrate-containing vesicles) were used. The kinetics parameters of the reaction in homogeneous solution and in the vesicular systems were determined. The rate of the extra- or intravesicular enzymatic reaction was found to be controlled by substrate diffusion through the lipid bilayer. In comparison with untreated vesicular systems, an up to seven-fold increase in reaction rate was observed in the presence of either ALM or ZER.  相似文献   

10.
Immobilized enzyme catalyzed biotransformations involving macromolecular substrates and/or products are greatly retarded due to slow diffusion of large substrate molecules in and out of the typical enzyme supports. Slow diffusion of macromolecules into the matrix pores can be speeded up by use of macroporous supports as enzyme carriers. Depolymerization reactions of polysaccharides like starch, pectin, and dextran to their respective low molecular weight products are some of the reactions that can benefit from use of such superporous matrices. In the present work, an indigenously prepared rigid cross-linked cellulose matrix (called CELBEADS) has been used as support for immobilizing alpha amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1.) and pectinase (endo-PG: poly(1,4-alpha-galactouronide) glycanohydrolase, EC 3.2.1.15). The immobilized enzymes were used for starch and pectin hydrolysis respectively, in batch, packed bed and expanded bed modes. The macroporosity of CELBEADS was found to permit through-flow and easy diffusion of substrates pectin and starch to enzyme sites in the porous supports and gave reaction rates comparable to the rates obtained using soluble enzymes.  相似文献   

11.
This article reviews most of the author's studies on process development and reactor design for continuous microbial reactions. (1) Enzyme reactions of growing and non-growing microbial cells immobilized in agar gel beads were analyzed pertaining to the effects of external and internal diffusion of substrate on reaction kinetics. (2) Experimental correlations of production rates of beta-fructosidase and acid phosphatase with dilution rate of continuous culture were simulated based on an operon model for enzyme regulation. (3) Population dynamics of an amylase-producing bacteria and their mutant were discussed in relation to enzyme productivity in a continuous culture of spore-forming bacteria. (4) Plasmid mobilization in a mixed population of donor, recipient, and helper cells was investigated in a continuous culture as a model study of accidental release of a genetically modified plasmid into a natural environment. (5) A production rate increase of up to 100-fold was achieved by cell-recycle culturing of continuous acetic acid fermentation using a filter module with a hollow fiber membrane. (6) The feasibility of a continuous surface culture for the biooxidation of organic substances was ascribed to an enhanced oxygen absorption rate in the presence of a microbial film on a liquid surface. (7) Simultaneous separation of inhibitory products using an electrodialysis module during some organic acid fermentations was effective for increasing production in a continuous culture.  相似文献   

12.
Abstract

Enzyme promiscuity can be defined as the capability of enzymes to catalyse side reaction in addition to its main reaction. The side reaction of an enzyme is termed as promiscuous or sometimes as the “darker” side of enzyme cross-reactivity/specificity. This unique property of enzyme allows organisms to adapt under varying environmental conditions. Promiscuous enzymes can modify their catalytic activities with altered substrates and can adjust their catalytic and kinetic mechanisms according to substrate properties. This group of enzymes evolved from ancestral proteins found in primitive organisms like archaea that survive under extreme environmental conditions. Such ancestral proteins possessed the potential to catalyse a wide range of reactions at low levels, hence create families or superfamilies of highly specialized enzymes. Further, some enzymes were identified which have non-catalytic functions in addition to their major catalytic activities. These enzymes are referred to as moonlighting enzymes. The study of these enzymes will provide important information regarding enzyme evolution and will help in optimizing protein engineering applications.  相似文献   

13.
In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis ratio (S/H ratio) and the yield decreased, resulting in lower product and higher by-product concentrations. The effect of pH, enzyme loading, and temperature was investigated, their influence on the course of the reaction was evaluated, and eventually diffusion limitation was minimised. It was found that at pH >or=7 the effect of diffusion limitation was eminent; the difference in S/H ratio and yield between free and immobilised enzyme was considerable. At lower pH, the influence of diffusion limitation was minimal. At low temperature, high yields and S/H ratios were found for all enzymes tested because the hydrolysis reactions were suppressed and the synthesis reaction was hardly influenced by temperature. The enzyme loading influenced the S/H ratio and yield, as expected for diffusion-limited particles. For Assemblase 3750 (the number refers to the degree of enzyme loading), it was proven that both cephalexin synthesis and hydrolysis were diffusion limited. For Assemblase 7500, which carries double the enzyme load of Assemblase 3750, these reactions were also proven to be diffusion limited, together with the binding-step of the substrate phenylglycine amide to the enzyme. For an actual process, the effects of diffusion limitation should preferably be minimised. This can be achieved at low temperature, low pH, and high substrate concentrations. An optimum in S/H ratio and yield was found at pH 7.5 and low temperature, where a relatively low reaction pH can be combined with a relatively high solubility of 7-ADCA. When comparing the different enzymes at these conditions, the free enzyme gave slightly better results than both immobilised biocatalysts, but the effect of diffusion limitation was minimal.  相似文献   

14.
In the usual reaction catalyzed by D-amino acid transaminase, cleavage of the alpha-H bond is followed by the reversible transfer of the alpha-NH2 to a keto acid cosubstrate in a two-step reaction mediated by the two vitamin B6 forms pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP). We report here a reaction not on the main pathway, i.e., beta-decarboxylation of D-aspartate to D-alanine, which occurs at 0.01% the rate of the major transaminase reaction. In this reaction, beta-C-C bond cleavage of the single substrate D-aspartate occurs rather than the usual alpha-bond cleavage in the transaminase reaction. The D-alanine produced from D-aspartate slowly inhibits both transaminase and decarboxylase activities, but NADH or NADPH instantaneously prevent D-aspartate turnover and D-alanine formation, thereby protecting the enzyme against inhibition. NADH has no effect on the enzyme spectrum itself in the absence of substrates, but it acts on the enzyme.D-aspartate complex with an apparent dissociation constant of 16 microM. Equivalent concentrations of NAD or thiols have no such effect. The suppression of beta-decarboxylase activity by NADH occurs concomitant with a reduction in the 415-nm absorbance due to the PLP form of the enzyme and an increase at 330 nm due to the PMP form of the enzyme. alpha-Ketoglutarate reverses the spectral changes caused by NADH and regenerates the active PLP form of the enzyme from the PMP form with an equilibrium constant of 10 microM. In addition to its known role in shuttling electrons in oxidation-reduction reactions, the niacin derivative NADH may also function by preventing aberrant damaging reactions for some enzyme-substrate intermediates. The D-aspartate-induced effect of NADH may indicate a slow transition between protein conformational studies if the reaction catalyzed is also slow.  相似文献   

15.
An intact cell assay system based on Tween-80 permeabilization was used to investigate ribonucleotide reductase activity in Chinese hamster ovary cells. Dithiothreitol, a reducing agent, is required for optimum activity. Analysis of dithiothreitol stimulation of CDP and ADP reductions indicated that in both cases the reducing agent served only to increase the reaction rate without altering the affinity of the enzyme for substrates. Magnesium chloride significantly stimulated the reduction of CDP but not ADP; this elevation in CDP reduction was due to an increase in both the affinity of the enzyme for substrate and the Vmax. In addition to ATP and dGTP, well-known activators of CDP and ADP reductase activities, it was found that dCTP and GTP were also able to activate CDP and ADP reductase activities, respectively. For the dCTP-activated reaction the Vmax was 0.158 nmol dCDP formed 5 X 10(6) cells-1 h-1 and the Km was 0.033 mM CDP, while for the GTP-activated reduction a Vmax of 0.667 nmol dADP formed 5 X 10(6) cells(-1) h-1 and Km of 0.20 mM ADP were observed. Kinetic analysis revealed that dCTP, dGTP, and GTP stimulate ribonucleotide reduction solely by increasing the affinity of the enzyme for substrate without affecting the Vmax of the respective reactions. ATP behaves in a different manner as it stimulates CDP reduction by altering both the affinity of the enzyme for substrate and the Vmax. Cellular concentrations of ribo- and deoxyribonucleoside di- and triphosphate pools were measured to help evaluate the relative physiological importance of the nucleotide activators. These determinations, along with the reaction kinetic studies, strongly imply that ATP is a much more important regulator of CDP reduction that dCTP, whereas GTP may serve as well or better than dGTP as the in vivo activator of ADP reduction.  相似文献   

16.
The limit to the possible rate of reversible enzymatic reactions set by the diffusional motion has been considered. It is found that not only the diffusion of the reactants to the enzyme but also the diffusion away of the products can be rate limiting. To avoid assumptions about the detailed nature of the enzyme only diffusion in the bulk aqueous medium is treated. By such an approach one obtains an upper limit to the possible rate. In the latter half of the paper the derived general equations are applied to the possible suggested reaction schemes for the enzyme carbonic anhydrase. It is found that a scheme involving HCO3- as substrate for the dehydration process and a direct reaction between buffer and enzyme is comsistent with the limits set by the diffusional motion, while several other possibilities can be ruled out.  相似文献   

17.
A meaningful method of comparison is suggested for saturation kinetics, typical of enzyme-catalyzed reactions, and nonsaturation kinetics, often typical of model compound reactions. True diffusion-controlled reactions do not give saturation behavior; but enzymes may need saturation behavior to attain selectivity and stereospecificity for complicated substrates or for reactions beyond the complexity of electron transfer. However, the diffusion controlled limit provides a better reference point for rate comparisons than does the rate of uncatalyzed reaction. The failure of the Stokes-Einstein equation for small substrates is documented, as are ways of circumventing the problem. Advantages and pitfalls in the use of viscosogens to test for diffusion control are delineated. Finally, the possible advantages of surface diffusion for an enzyme, but lack of experimental evidence, is discussed.  相似文献   

18.
A purification scheme has been developed for an enzyme, thymine 7-hydroxylase, which appears to catalyze three sequential dioxygenase reactions, i.e., thymine → 5-hydroxymethyluracil → formyluracil → uracil-5-carboxylic acid. The enzyme was purified 1,300-fold from Neurospora crassa and had specific activities of approximately 1200, 600, and 250 U/mg for the respective reactions. Evidence that a single protein catalyzes the three reactions includes: the parallel purification of the three activities throughout the purification scheme, the inhibition of each reaction by the substrates of the other two, the inhibition of the three reactions by uracil, the parallel loss of the three activities upon heat denaturation, and considerations of a mechanism which suggest that a single active site may be involved.  相似文献   

19.
Oxidase reactions of tomato anionic peroxidase   总被引:1,自引:0,他引:1       下载免费PDF全文
Brooks JL 《Plant physiology》1986,80(1):130-133
Tomato (Lycopersicon esculentum Mill) anionic peroxidase was found to catalyze oxidase reactions with NADH, glutathione, dithiothreitol, oxaloacetate, and hydroquinone as substrates with a mean activity 30% that of horseradish peroxidase; this is in contrast to the negligible activity of the tomato enzyme as compared to the horseradish enzyme in catalyzing an indoleacetic acid-oxidase reaction with only Mn2+ and a phenol as cofactors. Substitution of Ce3+ for Mn2+ produced an 18-fold larger response with the tomato enzyme than with the horseradish enzyme, suggesting a significant difference in the autocatalytic indoleacetic acid-oxidase reactions with these two enzymes. In attempting to compare enzyme activities with 2,4-dichlorophenol as a cofactor, it was found that reaction rates increased exponentially with both increasing cofactor concentration and increasing enzyme concentration. While the former response may be analogous to allosteric control of enzyme activity, the latter response is contrary to the principle that reaction rate is proportional to enzyme concentration, and additionally makes any comparison of enzyme activity difficult.  相似文献   

20.
Biocatalysis, the use of enzymes in chemical transformations, is an important green chemistry tool. Cascade reactions combine different enzyme activities in a sequential set of reactions. Cascades can occur within a living (usually bacterial) cell; in vitro in ‘one pot’ systems where the desired enzymes are mixed together to carry out the multi-enzyme reaction; or using microfluidic systems. Microfluidics offers particular advantages when the product of the reaction inhibits the enzyme(s). In vitro systems allow variation of different enzyme concentrations to optimise the metabolic ‘flux’, and the addition of enzyme cofactors as required. Cascades including cofactor recycling systems and modelling approaches are being developed to optimise cascades for wider industrial scale use. Two industrially important enzymes, transaminases and carboxylic acid reductases are used as examples regarding their applications in cascade reactions with other enzyme classes to obtain important synthons of pharmaceutical interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号