首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diurnal changes in the chilling sensitivity of seedlings   总被引:8,自引:6,他引:2       下载免费PDF全文
Seedlings of tomato (Lycopersicon esculentum, Mill.) varied diurnally in their sensitivity to chilling temperatures. If chilled near the end of the dark period when they were most sensitive, the time taken to kill half of the seedlings was approximately 3 days, whereas in samples taken 4 hours after the onset of dark, a period of 6 days of chilling was required. Sensitivity dropped rapidly after the onset of the light period. This rhythm was exogenously controlled by the diurnal changes in light, rather than in the temperature. The susceptibility of predawn seedlings could be reduced by exposure to light, by water stress, or by abscisic acid applied to the leaves. However, the subsequent changes in sensitivity to chilling did not correlate with stomatal aperture. Six other chilling-sensitive species showed similar diurnal changes in their chilling sensitivity.  相似文献   

2.
Cucumber (Cucumis sativus L.) seedlings are more sensitive to chilling stress when transferred to low temperature from the night cycle than from the day cycle. However, greater damage occurs when chilling is carried out in light than in dark. Freshly isolated protoplasts are extremely sensitive to damage when chilled at 4°C in light, but suffer significantly less injury when chilled in dark. If freshly isolated protoplasts are pre-chill conditioned at 27°C in either light or dark for a few hours prior to exposure to various chilling stresses, subsequent chilling damage is markedly reduced. Damage to chilled protoplasts also is reduced if cultures are placed in dark instead of light immediately following removal from low temperature. Experiments utilizing the cell wall synthesis inhibitor, dichlorobenzonitrile, showed that cell wall regeneration during the pre-chill conditioning period at 27°C does not appear to be associated with the enhanced chilling tolerance observed in these cultures. The results obtained in this investigation suggest that the physiological properties of cucumber cotyledon protoplasts accurately reflect those of intact seedlings, and hence provide a good system for studies into the mechanism of chilling damage in plants.  相似文献   

3.
The cercariae of Schistosoma haematobium showed a diurnal periodicity of emergence from Bulinus globosus in a twelve hour light/dark cycle. Peak emission occurred at 11.00 hrs with a smaller peak at 20.00 hrs, following the start of the period of darkness. In continuous illumination this second peak was not seen, indicating that only the morning peak is circadian in origin. The evening peak occurs in response to dark treatment and can be produced by periods of darkness ranging from eight seconds to one hour. The longer the period of dark treatment the longer the rise in output is maintained on return to light conditions. Subjection of snails to periods of dark treatment during the normal light period caused a reduction in the evening peak with the largest effect seen following the longest period of darkness. An increased output of cercariae was seen following fifteen minutes exposure to a range of light intensities, the largest increase occurring at 10,000 and 7000 lux and complete darkness. The rapidity of this reaction to variations in light intensity suggests that the cercariae of S. haematobium are showing emergence in response to shadows.  相似文献   

4.
Cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 12:12h at 35°C showed rhythmic daily changes in chilling resistance. Chilling treatment (5°C, 48h) started at the beginning or middle of the daily light period resulted in a substantial growth inhibition of the seedlings upon return to 35°C whereas when chilling was started at the beginning or middle of the dark period the subsequent growth of the seedlings was much less inhibited. This rhythm in chilling resistance persisted under continuous light for three 24-h periods, indicating that it is of an endogenous nature. Seedlings grown under continuous light from germination showed no daily changes in resistance, but a rhythm was initiated by introduction of a dark period of 6h or longer. In 24-h cycles with different light and dark periods, maximal resistance was reached just before the start of dark period. Seedlings grown at 35°C could be acclimated to chilling by exposure to low, non-damaging temperatures (25–15°C). A short-term (6h) exposure to 25°C started at the resistant phase resulted in a large increase in resistance during the following otherwise sensitive phase. The resistance induced by the low temperature matched or slightly exceeded the maximal resistance reached during the resistant phase of the daily rhythm of chilling. The low-temperature-induced resistance and the daily rhythmic increase in resistance were not additive, indicating a common mechanism for the two kinds of resistances. An adaptive advantage of a combination of a rapid temperature-induced acclimation and the daily rhythmic increase in resistance is suggested.  相似文献   

5.
Arnon Rikin 《Planta》1992,187(4):517-522
The effect of temperature and relative humidity (RH) on the time course of the rhythmic endogenous changes of chilling resistance was studied in cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 12:12 h. The resistant phase to 5° C, 85% RH lasted during most of the dark period while to 5° C, 100% RH it was longer and extended into the last half of the light period because a transient phase advance occurred when chilling started at the middle of the light period. Seedlings acclimated by low temperature were resistant throughout the light-dark cycle. A treatment with 100% RH before chilling to acclimated seedlings introduced a sensitive phase that corresponded to that of non-acclimated seedlings. In non-acclimated seedlings, this treatment decreased the resistance but the basic pattern of the rhythm was sustained. Changes in chilling resistance were analyzed under fluctuating temperatures and RHs, and explained taking into consideration the functioning of the circadian clock and environmental induction of resistance.Abbreviations CR chilling resistance - LDC light-dark cycle of 24 h - RH relative humidity  相似文献   

6.
Arnon Rikin 《Planta》1991,185(3):407-414
The relationship between the degree of chilling resistance and phase shifting caused by low-temperature pulses was examined in two circadian rhythms in cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 1212 h at 33° C. The seedlings showed a circadian rhythm of chilling resistance and of cotyledon movement. A pulse of 19° C for 12 h during the chilling-sensitive phase (light period) caused a phase delay of 6 h, while a similar temperature pulse during the chilling-resistant phase (dark period) did not cause any phase shift. Exposure to 19° C, 85% RH (relative humidity) for 12 h during the dark period induced chilling resistance in the following otherwise chilling-sensitive light period. In this light period a 12-h 19° C pulse did not cause a phase shift of chilling resistance. Pulses of low temperatures (5–19° C) were more effective in causing phase delays in the rhythm of cotyledon movement when given during the chilling-sensitive phase than when given during the chilling-resistant phase. A 12-h pulse of 5° C, 100% RH during the light period caused a phase delay of cotyledon movement of 12 h. However, when that pulse had been preceded by a chill-acclimating exposure to 19° C, 85% RH for 12 h during the dark period the phase delay was shortened to 6 h. The correlation between higher degree of chilling resistance and the prevention or shortening of the phase delay caused by low temperatures indicates that the mechanism that increases chilling resistance directly or indirectly confers greater ability for prevention of phase shifting by low temperatures in circadian rhythms.Abbreviations CT circadian time - LDC light-dark cycle of 24 h - RH relative humidity  相似文献   

7.
The effects of chilling on the photosynthesis of a chilling-resistant species, pea (Pisum sativum L. cv Alaska) and a chilling-sensitive species, cucumber (Cucumis sativus L. cv Ashley) were compared in order to determine the differences in the photosynthetic chilling sensitivity of these two species. For these experiments, plants were chilled (5°C) for different lengths of time in the dark or light. Following a 1 hour recovery period at 25°C, photosynthetic activity was measured by gas exchange (CO2 uptake and H2O release), quantum yield, and induced chlorophyll fluorescence. The results show that pea photosynthesis was largely unaffected by two consecutive nights of chilling in the dark, or by chilling during a complete light and dark cycle (15 hours/9 hours). Cucumber gas exchange was reduced by one night of chilling, but its quantum yield and variable fluorescence were unaffected by dark chilling. However, chilling cucumber in the light led to reduced CO2 fixation, increased internal leaf CO2 concentration, decreased quantum yield, and loss of variable fluorescence. These results indicate that chilling temperatures in conjunction with light damaged the light reactions of photosynthesis, while chilling in the dark did not.  相似文献   

8.
Chilling‐induced photosynthetic impairment was examined in leaves of maize (Zea mays L.) seedlings of two cultivars, one adapted to western Europe and one adapted to Mexican highlands. Three experiments were performed in a controlled environment. The effects of chilling night temperatures, of chilling at high light intensity and of variable chilling day temperatures on photosynthetic parameters, were evaluated. Chilling in the dark period resulted in stomatal limitation of net photosynthesis. Chilling at moderate to high light intensities caused chilling‐dependent photoinhibition of CO2 uptake. Photobleached maize leaves did not resume normal photosynthetic function. Maize cv. Batan 8686 from the highlands of Mexico was less susceptible to photosynthetic damage than maize cv. Bastion adapted for cultivation in W. Europe, when exposed to chilling night temperatures, or to mild chilling photoinhibitory conditions.  相似文献   

9.
Synopsis Reports that pomacentrid embryos hatch after dusk are confirmed by photic manipulation of sergeant major eggs. Embryos placed in the dark for 20 minutes or longer prior to their normal hatching after sunset hatched, whereas controls held in light did not hatch. Percent of hatched embryos correlated with increasing exposure to darkness up to one hour after which no further improvement in hatching was observed. Embryos maintained in continuous light during their normal twilight hatching period did not hatch. Also, embryos exposed to 60 minutes of darkness, if interrupted by one minute of light every 10 minutes did not hatch. The percent hatch in dark treatments varied significantly between nests and, in some treatments, correlated negatively with the size of the egg clumps (number of eggs per clump) tested. To initiate hatching in the presence of light required intensities of 0.03 lux or less. These low intensities are not reached until about 20 minutes after sunset on the reef where the embryos occur. We conclude that hatching for some embryos occurs about 30 minutes after sunset but for most is not completed until at least one hour after sunset. Hatching therefore takes place at a time long after potential diurnal fish predators have refuged in the reef structure.  相似文献   

10.
The role of increased oxidation induced by successive stresses of chilling and high light in the induction of leaf abscission was studied in Ixora coccinea plants in relation to auxin metabolism and oxidative processes. Exposure of plants following dark chilling (7°C for 3 days) to high light (500–700 μmol m−2 s−1 photosynthetically active radiation) for 5 h at 20–25°C enhanced chilling-induced leaf abscission. This abscission was inhibited by pretreatment with the antioxidant butylated hydroxyanisole, α -naphthaleneacetic acid or the ethylene action inhibitor, 1-methylcyclopropene. The oxidative processes initiated during the low light period following the dark chilling period, such as indoleacetic acid (IAA) decarboxylation and lipid peroxidation, were further enhanced by subsequent exposure to high light. Photoinhibition, expressed by the reduction of the chlorophyll fluorescence parameter Fv/Fm, was evident following exposure to high light, irrespective of the temperature of the pretreatment, but this reduction persisted only in chilled plants. This suggests that oxidative processes generated during and after the chilling period might have inhibited the recovery from photoinhibition. The chilling stress under darkness induced a 60% reduction in superoxide dismutase (SOD) activity and significant increases (130–600%) in the activities of several other antioxidative enzymes. These data suggest that the chilling-induced reduction in SOD activity may well be responsible for the increase in the oxidative stress induced by the subsequent light treatment, as expressed by the increased enzymatic activities. Taken together, this study provides further support for the involvement of oxidative processes in the events occurring in tissues exposed to sequential chilling and light stresses, leading to reduction in free IAA content in the abscission zone and to leaf abscission.  相似文献   

11.
12.
Cold tolerance of cucumber (Cucumis sativus L.) seedlings was investigated using wild-type plants and the phytochrome B-deficient mutant (lh-mutant). Plants were subjected for 6 days to intermittent short-term cooling (12°C for 2 h per day) and to continuous chilling under conditions of 16-h photoperiod (day/night = 16/8 h) and permanent illumination. “Dehardening” process was initiated by the transfer of plants to either light or dark conditions at 23°C. It was concluded that phytochrome B participates in the development of cold tolerance in cucumber plants under stress conditions, i.e., under short-term intermittent chilling at nights and during dehardening in continuous darkness.  相似文献   

13.
Xin Z  Li PH 《Plant physiology》1992,99(2):707-711
The induction of chilling tolerance by abscisic acid (ABA) in maize (Zea mays L. cv Black Mexican Sweet) suspension cultured cells was examined. Cell viability during exposure to chilling was estimated by triphenyl tetrazolium chloride reduction immediately after chilling and a filter paper growth assay. Both methods yielded comparable results. Chilling tolerance was induced by transferring 5-day-old cultures (late log phase) to a fresh medium containing ABA (10 to 100 micromolar). The greatest chilling tolerance was achieved with ABA at 100 micromolar. Growth of cells was inhibited at this concentration. After a 7-day exposure to 4°C in the dark, the survival of ABA-treated cells (100 micromolar ABA, 28°C for 24 h in the dark) was sevenfold greater than untreated cells. Effective induction of chilling tolerance was first observed when cells were held at 28°C for 6 hours after adding ABA. No tolerance was induced if the culture was chilled at the inception of ABA treatment. Induction of chilling tolerance was inhibited by cycloheximide. These results indicate that ABA is capable of inducing chilling tolerance when ABA-treated cells are incubated at a warm temperature before exposure to chilling, and this induction requires de novo synthesis of proteins.  相似文献   

14.
Qiu J  Israel DW 《Plant physiology》1992,98(1):316-323
The effects of phosphorus deficiency on carbohydrate accumulation and utilization in 34-day-old soybean (Glycine max L. Merr.) plants were characterized over a diurnal cycle to evaluate the mechanisms by which phosphorus deficiency restricts plant growth. Phosphorus deficiency decreased the net CO2 exchange rate throughout the light period. The decrease in the CO2 exhange rate was associated with a decrease in stomatal conductance and an increase in the internal CO2 concentration. These observations indicate that phosphorus deficiency increased mesophyll resistance. Assimilate export rate from the youngest fully expanded leaves was decreased by phosphorus deficiency, whereas starch concentrations in these leaves were increased. Higher starch concentrations in phosphorus-deficient youngest fully expanded leaves resulted from a longer period of net starch accumulation and a shorter period of net starch degradation relative to those for phosphorus-sufficient controls. Phosphorus deficiency decreased sucrose-P synthase activity by 27% (averaged over the diurnal cycle), and essentially eliminated diurnal variation in sucrose-P-synthase activity. Diurnal variations in nonstructural carbohydrate concentrations in leaves and stems were also less pronounced in phosphorus-deficient plants than in controls. In phosphorus-deficient plants, only 30% of the whole plant starch present at the end of a light phase was utilized during the subsequent 12-hour dark phase as compared with 68% for phosphorus-sufficient controls. Although phosphorus deficiency decreased the CO2 exchange rate and whole plant leaf area, accumulation of high starch concentrations in leaves and stems and restricted starch utilization in the dark indicate that growth processes (i.e. sink activities) were restricted to a greater extent than photosynthetic capacity. Further experimentation is required to determine whether decreased starch utilization in phosphorus-deficient plants is the cause or the result of restricted growth.  相似文献   

15.
The effect of chilling on diurnal changes in activity of adenosine 5'-phosphosulfate sulfotransferase, glutathione reductase (EC 1.6.4.2) and glutathione transferase (EC 2.5.1.18) was analysed in the second leaf of Z 7, a chilling-tolerant, and Penjalinan, a chilling-sensitive maize (Zea mays L.) genotype. Nitrate reductase (EC 1.6.6.1) was measured for comparison. All enzyme activities examined changed with a typical diurnal rhythm in both genotypes cultivated at 25°C. Adenosine 5'-phosphosulfate sulfotransferase and nitrate reductase activity peaked during the light period, then decreased and reached lowest levels at the end of the dark period. Glutathione reductase activity increased in the dark and decreased during the light period. Maximum glutathione transferase activities were measured in the middle of the light period, minimal ones in the middle of the dark period. At 12°C these diurnal changes were eliminated in all enzymes examined of both genotypes.
The average adenosine 5'-phosphosulfate sulfotransferase and glutathione reductase activity were higher in the chilling-tolerant Z 7 than in the sensitive Penjanilan at 12°C in the light. Increased levels of both enzymes may contribute in establishing increased levels of cysteine and reduced glutathione in the chilling-tolerant Z 7. Indeed it has been shown before that the chilling-tolerant maize genotypes contain higher levels of both compounds at low temperatures than chilling-sensitive ones.  相似文献   

16.
Diurnal carbohydrate metabolism of barley primary leaves   总被引:20,自引:11,他引:9       下载免费PDF全文
The carbohydrate content of barley (Hordeum vulgare L.) leaves was measured over a 24-hour cycle. Nonstructural carbohydrate accumulation was linear after the 1st hour of light, whereas utilization in the dark was fast initially and slowed as stored reserves were depleted. Sucrose was the most abundant storage form of carbohydrate in the primary leaf. Lesser amounts of starch, fructans, and hexoses were also present. Leaf reserves were almost completely remobilized by the end of the dark period. There was a lag in starch degradation following a light to dark transition. Lower rates of starch accumulation were observed at the beginning and at the end of the day. Fructan synthesis occurred primarily towards the end of the light period as rates of sucrose and starch synthesis decreased. The above results suggested that carbohydrate metabolism in primary barley leaves was controlled by light and by endogenous factors such as foliar sucrose levels. Measurements of specific [14C]sucrose activity in steady state labeled 7-day-old barley primary leaves suggested the presence of at least two kinetically separate pools. Sucrose levels were higher and apparent turnover rates were lower in barley leaves in comparison to previous studies with other species.  相似文献   

17.
Levels of fructose 2,6-bisphosphate (F2,6BP) and related metabolites were measured in 8- or 9-day-old barley (Hordeum vulgare L.) primary leaves throughout a 24 hour cycle. Young barley leaves contained about 0.4 nanomole F2,6BP per milligram chlorophyll at the end of a 12 hour dark period. F2,6BP levels increased rapidly following a dark-to-light transition and then decreased to about 0.1 nanomole per milligram chlorophyll after 5 or 10 minutes of light. Low levels of F2,6BP were detected in barley primary leaves throughout the day. A 10-fold increase in F2,6BP was observed during the first hour of the dark period and then levels of this metabolite decreased slowly for the next several hours. Only small diurnal fluctuations were noted in barley leaf glucose 6-phosphate and uridine 5′-diphosphoglucose levels. There were rapid changes in whole leaf F2,6BP levels when the light intensity was altered. High F2,6BP levels in the dark were not observed after short photosynthetic periods. Results obtained with barley primary leaves support the suggestion that F2,6BP is involved in regulating the flow of photosynthate from the chloroplast to sucrose. Extractable sucrose-phosphate synthase activity was inversely related to barley primary leaf F2,6BP levels. This finding may indicate that the activities of sucrose-phosphate synthase and cytosolic fructose 1,6-bisphosphatase in barley primary leaves are metabolically coordinated.  相似文献   

18.
Cotton (Gossypium hirsutum L.) seedlings that were grown under a photoperiod of 12 hours darkness and 12 hours light showed oscillations in their sensitivity to the herbicides sodium 5-(2-chloro-4-trifluoromethyl)-phenoxy)-2-nitrobenzoate (acifluorfen), butyl 2-(4-((5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate (fluazifop) and 3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon). Sensitivity was expressed in appearance of necrotic areas on the cotyledons and in decreased growth of the shoot. The seedlings were least sensitive in the beginning and middle of the light period, then the sensitivity increased and reached its maximum during the beginning and middle of the dark period and then declined. Seedlings grown from germination under continuous light exhibited very small or no oscillations in sensitivity. The oscillations in sensitivity were entrained by one cycle of darkness and light. A cycle of 12 hours darkness and 12 hours light triggered the greatest oscillations while either increasing or decreasing the duration of the dark period resulted in smaller oscillations. Apparently, these oscillations in sensitivity to herbicides were endogenously controlled since after entrainment they continued irrespective of the light conditions.  相似文献   

19.
In seedlings of Raphanus sativus (radish) and Sinapis alba (mustard), irradiation for 6 hours with far red light significantly increases the extractable activity of phenylalanine ammonia-lyase by the end of the light period. A schedule of 10 minutes red light-110 minutes darkness-10 minutes red-110 minutes darkness-10 minutes red-110 minutes darkness has no effect as compared to dark controls. However, the red light program maintains a level of far red-absorbing phytochrome always measurable by in vivo spectrophotometry during the 6-hour experimental period. We conclude that the far red effect on this enzyme and for this specific material cannot be explained solely by formation and maintenance of far red-absorbing phytochrome.  相似文献   

20.
Maize (Zea mays L. cv. Pioneer 3184) leaf elongation rate was measured diurnally and was related to diurnal changes in the activities of sucrose metabolizing enzymes and carbohydrate content in the elongating portion of the leaf. The rate of leaf elongation was greatest at midday (1300 hours) and was coincident with the maximum assimilate export rate from the distal portion of the leaf. Leaf elongation during the light period accounted for 70% of the total observed increase in leaf length per 24 hour period. Pronounced diurnal fluctuations were observed in the activities of acid and neutral invertase and sucrose phosphate synthase. Maximum activities of sucrose phosphate synthase and acid invertase were observed at 0900 hours, after which activity declined rapidly. The activity of sucrose phosphate synthase was substantially lower than that observed in maize leaf source tissue. Neutral invertase activity was greatest at midday (1200 hours) and was correlated positively with diurnal changes in leaf elongation rate. There was no significant change in the activity of sucrose synthase over the light/dark cycle. Sucrose accumulation rate increased during a period when leaf elongation rate was maximal and beginning to decline. Maximum sucrose concentration was observed at 1500 hours, when the activities of sucrose metabolizing enzymes were low. At no time was there a significant accumulation of hexose sugars. The rate of starch accumulation increased after the maximum sucrose concentration was observed, continuing until the end of the light period. There was no delay in the onset of starch mobilization at the beginning of the dark period, and essentially all of the starch was depleted by the end of the night. Mobilization of starch in the elongating tissue at night could account for a significant proportion of the calculated increase in the tissue dry weight due to growth. Collectively, the results suggested that leaf growth may be controlled by the activities of certain sucrose metabolizing enzymes and may be coordinated with assimilate export from the distal, source portion of the leaf. Results are discussed with reference to diurnal photoassimilation and export in the distal, source portion of the leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号