首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of proteolipid protein by isolated rat liver mitochondria   总被引:3,自引:0,他引:3  
About 15% of the total (3H)leucine incorporated into protein by isolated rat liver mitochondria invitro could be extracted by chloroform:methanol. This incorporation was inhibited by chloramphenicol and carbomycin, both specific inhibitors of mitochondrial protein synthesis. SDS-gel electrophoresis of the mitochondrial membrane revealed 6–7 labeled bands. Label in the proteolipid fraction was present mainly in a band of 40,000 molecular weight. Several labeled bands observed in gels of the mitochondrial membrane were not removed or changed by extraction with chloroform:methanol suggesting that some, but not all, of the proteins synthesized by rat liver mitochondria are proteolipids.  相似文献   

2.
Summary Inhibitors of, and radioactive substrates for, protein synthesis were introduced into germinating pea (Pisum sativum L.) seeds, and protein synthesis was allowed to proceed in vivo. Subsequent analyses of subcellular fractions showed the following: Cycloheximide strongly inhibited the incorporation of [14C]leucine into both mitochondrial and cytoplasmic proteins. d-Threo-chloramphenicol and erythromycin did not affect cytoplasmic protein synthesis, but partially inhibited mitochondrial protein synthesis. These results suggest that most of the new mitochondrial proteins were originally synthesized in the cytoplasm. Actinomycin D did not appreciably affect the initial incorporation of [14C]leucine into either mitochondrial or cytoplasmic proteins, suggesting that information (mRNA) concerning the initially synthesized proteins may be present in the quiescent seeds. The lack of appreciable incorporation of [3H]thymidine into mitochondrial DNA supported our previons report that mitochondria may not be synthesized de novo in pea cotyledons.  相似文献   

3.
Mitochondria can synthesize phosphatidyl-ethanolamine (PE) through phosphatidylserine decarboxylase (PS decarboxylase) activity or can import this lipid from the endoplasmic reticulum. In this work, we studied the factors influencing the import of PE in brain mitochondria and its utilization for the assembly of mitochondrial membranes. Incubation of rat brain homogenate with [1-3H]ethanolamine resulted in the synthesis and distribution of 3H-PE to subcellular fractions. T-wenty-one percent of labeled PE was recovered in purified mitochondria. The import of PE in mitochondria was studied in a reconstituted system made of microsomes (donor particles) and purified mitochondria (acceptor particles). Ca+2 and nonspecific lipid transfer protein purified from liver tissue (nsL-TP) enhanced the translocation process. 3H-PE synthesized in membrane associated to mitochondria (MAM) could also translocate to mitochondria in the reconstituted system. Exposure of mitochondria to trinitrobenzensulfonic acid (TNBS) resulted in the reaction of more than 60% of 3H-PE imported from endoplasmic reticulum and of about 25% of 14C-PE produced in mitochondria by decarboxylation of 14C-PS. Moreover, the removal of the outer mitochondrial membrane by digitonin treatment, resulted in the loss of 3H-PE, but not 14C-PE. These results indicate that labeled PE imported in mitochondria is mainly localized in the outer mitochondrial membrane, whereas PE produced by PS decarboxylase activity is confined to the inner mitochondrial membrane. Phospholipase C hydrolyzed 25–30% of both PE radioactivity and mass of the outer mitochondrial membrane indicating an asymmetrical distribution of this lipid across the membrane.Mr. Carlo Ricci is thanked for his skillful technical assistance. This work has been supported by a grant from the Ministry of Education, Rome, Italy.  相似文献   

4.
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria. Incubation of 35S-methionine labeled mitochondria from rat hepatocytes with proteins synthesized in a cell-free system, using messenger RNA from rat liver, dramatically increased the release of mitochondrial proteins and fragments thereof into the medium. Since the synthesized proteins include cytosolic precursors of mitochondrial proteins, our results strongly suggest that import of proteins from the cytosol into mitochondria influences the half-life of proteins in these organelles. The use of this simple approach — i.e. combining the study of protein import and exit with mitochondria — to further clarify intracellular protein turnover and its regulation is suggested.  相似文献   

5.
Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB–PTPIP51 interaction and ER–mitochondria associations. These disruptions are accompanied by perturbation of Ca2+ uptake by mitochondria following its release from ER stores, which is a physiological read‐out of ER–mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS‐expressing cells; mitochondrial ATP production is linked to Ca2+ levels. Finally, we demonstrate that the FUS‐induced reductions to ER–mitochondria associations and are linked to activation of glycogen synthase kinase‐3β (GSK‐3β), a kinase already strongly associated with ALS/FTD.  相似文献   

6.
The size distribution of the proteins synthesized by isolated HeLa cell mitochondria has been analyzed by polyacrylamide gel electrophoresis and compared to that of the in vivo products of mitochondrial protein synthesis.The electrophoretic pattern of the mitochondrial proteins labeled in vitro with [3H]leucine has a group of partially resolved components migrating in the region corresponding to 12,000 to 25,000 molecular weight, and another group, more abundant, in the range from 40,000 to 55,000 molecular weight. This pattern is very similar, after a two-hour incubation of mitochondria, to that of the proteins labeled in vivo in a 30-minute [3H]leucine pulse.  相似文献   

7.
Shoots of germinating rice (Oryza sativa L.) seedlings are able to grow under anoxia and to withstand long periods of anoxic treatment. Mitochondria were purified from aerobically germinated and anaerobically treated rice shoots by differential and isopycnic centrifugation and were found to consist of two subpopulations. The mitochondrial subpopulation of higher density was used for further characterization. Ultrastructural studies showed anaerobic mitochondria to be significantly different from aerobic mitochondria, with a matrix of lower density and more developed cristae. Aerobic and anaerobic mitochondria also differed in their specific activities for fumarase and succinate dehydrogenase, which were significantly lower after the anoxic treatment. In vivo labeling of seedlings with l-[35S]methionine and subsequent isolation of the mitochondria indicated that anoxia induced a drastic decrease, but not a total inactivation, of the synthesis of mitochondrial proteins. In organello protein synthesis showed that anaerobic mitochondria were able to synthesize most of the polypeptides synthesized by aerobic mitochondria, although only in the presence of exogenous ATP, as would occur under anoxia. Anaerobic mitochondria, but not aerobic mitochondria, could carry out protein synthesis without a functional respiratory chain. Thus, mitochondrial protein synthesis was found to be potentially functional in the rice shoot under anoxia.  相似文献   

8.
Summary Rat liver mitochondria were fractionated into inner and outer membrane components at various times after the intravenous injection of14C-leucine or14C-glycerol. The time curves of protein and lecithin labeling were similar in the intact mitochondria, the outer membrane fraction, and the inner membrane fraction. In rat liver slices also, the kinetics of3H-phenylalanine incorporation into mitochondrial KCl-insoluble proteins was identical to that of14C-glycerol incorporation into mitochondrial lecithin. These results suggest a simultaneous assembly of protein and lecithin during membrane biogenesisThe proteins and lecithin of the outer membrane were maximally labeledin vivo within 5 min after injection of the radioactive precursors, whereas the insoluble proteins and lecithin of the inner membrane reached a maximum specific acitivity 10 min after injection.Phospholipid incorporation into mitochondria of rat liver slices was not affected when protein synthesis was blocked by cycloheximide, puromycin, or actinomycin D. The injection of cycloheximide 3 to 30 min prior to14C-choline did not affect thein vivo incorporation of lecithin into the mitochondrial inner or outer membranes; however treatment with the drug for 60 min prior to14C-choline resulted in a decrease in lecithin labeling. These results suggest that phospholipid incorporation into membranes may be regulated by the amount of newly synthesized protein available.When mitochondria and microsomes containing labeled phospholipids were incubated with the opposite unlabeled fractionin vitro, a rapid exchange of phospholipid between the microsomes and the outer membrane occurred. A slight exchange with the inner membrane was observed.  相似文献   

9.
In Krebs ascites-tumour cells, cytochrome c is segregated in the mitochondria and the level in microsomes could not be measured. At 22° in glucose–buffer Krebs cells synthesized a spectrum of proteins including cytochrome c. Mild osmotic shock in the presence of ribonuclease had little effect on incorporation of [14C]-leucine or [14C]valine into mixed mitochondrial protein but strongly inhibited synthesis of non-mitochondrial cytoplasmic proteins. Under these conditions, labelling of cytochrome c was also strongly inhibited. After pulse labelling of Krebs cells at 22° for 10min. the cytcchrome radioactivity found in mitochondria was higher than in microsomes. After addition of unlabelled amino acid as `chase' there was 137% increase in radioactivity of cytochrome c but only a 3% increase in radioactivity of whole-cell protein. It is concluded that the peptide chain of cytochome c is synthesized on cytoplasmic ribosomes. Mitochondria therefore do not have the character of self-replicating entities, but are formed by the cooperative function of messenger RNA of cytoplasmic ribosomes and, possibly, of intramitochondrial messenger derived from the mitochondrial DNA.  相似文献   

10.
The effects of streptozotocin-induced diabetes mellitus upon mitochondria from rat skeletal muscle and kidney were examined. The rate of amino acid incorporation in vitro by isolated skeletal muscle mitochondria from diabetic animals was decreased by 50–60% from control values. Treatment of diabetic animals with insulin lowered blood glucose levels to control values and restored the rate of muscle mitochondrial protein synthesis in vitro to control levels. The rates of skeletal muscle mitochondrial protein synthesis were also decreased 23–27% by a 2-day fast. Comparison of the translation products synthesized by isolated muscle mitochondria from control and diabetic rats by dodecyl sulfate polyacrylamide-gel electrophoresis revealed a uniform decrease in the synthesis of all polypeptides. Aurintricarboxylic acid and pactamycin, inhibitors of chain initiation, blocked protein synthesis to a greater extent in muscle mitochondria from control as compared to diabetic animals suggesting that mitochondria from diabetics are unable to initiate protein synthesis at a rate comparable to control. Phenotypic changes observed in diabetic muscle mitochondria included a 36% decrease in the content of cytochromes aa3 and a 27% decrease in cytochrome b, both established as containing mitochondrial translation products in lower eucaryotes. State 3 respiration with glutamate as substrate decreased by 27% and uncoupler-stimulated respiration decreased by 23% in the diabetic mitochondria. By contrast, the specific activities of NADH and succinate dehydrogenases, established as products of cytoplasmic protein synthesis in lower eucaryotes, were not decreased in skeletal muscle mitochondria from the diabetic animals. These results suggest that the considerable muscular atrophy observed in diabetics may involve decreases in both cytoplasmic and mitochondrial protein synthesis, the latter reflected in profound changes in the respiratory chain. By contrast, comparison of kidney mitochondria from control and diabetic rats revealed no differences in the rates of protein synthesis in vitro, nor in the mitochondrial translation products, which corresponded closely to liver and skeletal muscle translation products. Similarly, the mitochondrial content of cytochromes b, c + c1, and aa3, the specific activity of succinate dehydrogenase, the rate of state 3 respiration, and the recovery of mitochondria from kidney homogenates did not differ in control and diabetic animals. Kidney mitochondria are thus like liver mitochondria in being relatively unaffected by insulin deprivation.  相似文献   

11.
Loss-of-function mutations in PINK1 or parkin genes are associated with juvenile-onset autosomal recessive forms of Parkinson disease. Numerous studies have established that PINK1 and parkin participate in a common mitochondrial-quality control pathway, promoting the selective degradation of dysfunctional mitochondria by mitophagy. Upregulation of parkin mRNA and protein levels has been proposed as protective mechanism against mitochondrial and endoplasmic reticulum (ER) stress. To better understand how parkin could exert protective function we considered the possibility that it could modulate the ER–mitochondria inter-organelles cross talk. To verify this hypothesis we investigated the effects of parkin overexpression on ER–mitochondria crosstalk with respect to the regulation of two key cellular parameters: Ca2 + homeostasis and ATP production. Our results indicate that parkin overexpression in model cells physically and functionally enhanced ER–mitochondria coupling, favored Ca2 + transfer from the ER to the mitochondria following cells stimulation with an 1,4,5 inositol trisphosphate (InsP3) generating agonist and increased the agonist-induced ATP production. The overexpression of a parkin mutant lacking the first 79 residues (ΔUbl) failed to enhance the mitochondrial Ca2 + transients, thus highlighting the importance of the N-terminal ubiquitin like domain for the observed phenotype. siRNA-mediated parkin silencing caused mitochondrial fragmentation, impaired mitochondrial Ca2 + handling and reduced the ER–mitochondria tethering. These data support a novel role for parkin in the regulation of mitochondrial homeostasis, Ca2 + signaling and energy metabolism under physiological conditions.  相似文献   

12.
The functioning of the mitochondrial permeability transition pore (mPTP) is involved in the mechanism of programmed cell death and mitochondrial dysfunction observed with aging. In this work, the functional state of heart mitochondria isolated from young (mature and 2–3-month-old) and old (20–22-month-old) rats under conditions of mPTP opening was studied. In the mitochondria of old rats, the rates of Ca2+ and TPP+ absorption decreased by 40 and 42%, respectively, the threshold concentration of Ca2+ decreased by 20%, and the swelling rate of mitochondria from old animals was by 40% higher than that of mitochondria from young ones. In the heart mitochondria of old animals, the content and production of reactive oxygen species (ROS) varied, the superoxide anion content was increased, and the level of hydroperoxide (H2O2) increased at a threshold calcium concentration. Electron microscopy revealed a decrease in the number of cristae in mitochondria of the rat heart during aging. To study the potential role of proteins modulating the mPTP functioning, the content of 2',3'-cyclonucleotide-3'-phosphodiesterase (CNPase) and translocator protein (TSPO) in the heart mitochondria of rats of different ages was measured. A significant age-related decrease in the level of CNPase and an increase in the amount of TSPO were detected. The role of these proteins in mitochondrial dysfunction observed during aging is discussed.  相似文献   

13.
For induction of the mitochondrial permeability transition (PT) by Ca2+, the addition of a respiratory substrate such as succinate is required. However, earlier studies indicated the possible induction of the mitochondrial PT by Ca2+ in the absence of a respiratory substrate (Hunter, D.R., and Haworth, R.A. (1979) Arch. Biochem. Biophys. 195, 453–459). In the present study, we obtained clear evidence showing that the mitochondrial PT could be induced by Ca2+ even in the absence of respiratory substrate. We next examined the protein release from mitochondria that accompanied the induction of PT in the absence of a respiratory substrate. Interestingly, distinct from the ordinary mitochondrial PT induced by Ca2+ in the presence of a respiratory substrate, which is associated with the release of mitochondrial cytochome c and adenylate kinase, the mitochondrial PT occurring in the absence of a respiratory substrate was associated with release of mitochondrial adenylate kinase but not with that of mitochondrial cytochrome c. This experimental system should be quite useful for understanding the mechanisms of protein release from mitochondria.  相似文献   

14.
15.
Mitochondria from ejaculated bovine spermatozoa contain a group of polypeptides ranging in molecular weights from 13,000 to 35,000 not found in other bovine or murine testicular mitochondria [Hecht and Bradley, 1981]. These proteins are present in the mitochondria isolated from both epididymal and ejaculated spermatozoa. To establish when during epididymal transport, spermiogenesis, and/or meiosis these proteins are synthesized, the synthesis intervals for the mitochondrial proteins from cauda epididymal spermatozoa were established following intratesticular injection of (35S)methionine. Mice were killed every third day over a 33-day period and cauda epididymal spermatozoa were fractionated into mitochondrial and head components. Radioactivity in each fraction was monitored by liquid scintillation counting. Maximal incorporation was observed during spermiogenesis, although substantial amounts of protein were synthesized during meiosis. Analysis of the mitochondrial polypeptides by gel electrophoresis revealed that many polypeptides such as the cysteine-rich structural protein of the mitochondrial capsule were synthesized over prolonged intervals of spermiogenesis and meiosis rather than in a brief specific time period. These results suggest that spermatozoal mitochondria are produced by a sequential substitution of new proteins into the differentiating mitochondria rather than the abrupt appearance of a new class of mitochondria during spermatogenesis.  相似文献   

16.
Nawa Y  Asahi T 《Plant physiology》1973,51(5):833-838
l-Leucine-U-14C was incorporated into mitochondrial protein in pea (Pisum sativum var. Alaska) cotyledons during the imbibing stages. Incorporation was almost completely inhibited by cycloheximide but not by chloramphenicol. Both antibiotics did not affect increases in mitochondrial activities and components of the cotyledons during imbibition. Therefore, mitochondrial development seems to be achieved by a transfer of protein pre-existing in the cytoplasm into the mitochondria rather than by de novo synthesis of mitochondrial protein. Cycloheximide stimulated an increase in bile saltsoluble protein of mitochondria in imbibing pea cotyledons. The recovery of cytochrome oxidase activity after sucrose density gradient centrifugation was enhanced, and the morphological properties of mitochondria were altered by cycloheximide.  相似文献   

17.
—[14C] orotic acid and [3H]l -leucine were injected intraperitoneally into two groups of rats, aged 12 and 24 months, respectively. The apparent turnover of RNA and protein from several subcellular fractions was assessed by following the loss of label from these fractions with time. The curves for apparent turnover of all protein fractions from mitochondria were single exponential curves. Total mitochondrial protein from younger animals had a half-life of 26.8 days. Two protein subfractions, protein insoluble in cold perchloric acid and chloroform-methanol (residual protein) and protein soluble in chloroform-methanol (C–M protein) had similar half-lives: 26.3 and 26.1 days, respectively. For the older animals the half-lives were 23.5 days for total protein, 17.4 for residual protein and 30.4 for C–M protein. The difference between the two protein subfractions from mitochondria of the older animals suggests an age-associated deviation from the synchrony of synthesis and degration of proteins in this organelle. Further deviation from the unit concept of mitochondrial turnover was seen in the apparent turnover of mitochondrial RNA. Mitochondrial RNA had half-lives of 10.0 and 11.6 days for older and younger animals, respectively, with no significant difference between the groups. No age-associated difference was observed in the apparent turnover of sRNA. This fraction exhibited a double exponential turnover pattern; the first component in both cases had a half-life of about 5–8 days and the second component 13–16 days. Ribosomal RNA and protein from both older and younger animals exhibited multiexponential kinetics but both components, RNA and protein, within each age group appeared to turn over synchronously. Average values for apparent turnover of total ribosomes (RNA and protein) were 18.2 days for the older animals and 7.4 days for the younger animals. The age-associated difference was highly significant P < (0.001).  相似文献   

18.
Several hundred proteins have been resolved on two-dimensional gels of extracts of [35S]methionine-labeled adult Drosophila melanogaster. 27 of these polypeptides disappear from the gel pattern after feeding the K+ ionophore nonactin. These proteins have been identified as mitochondrial, since the two-dimensional gel pattern of extracts of isolated mitochondria correlates well with the pattern of the proteins missing from that of nonactin-treated flies. Nine new proteins also appear on the two-dimensional gels of the extracts from the nonactin-treated flies. Apparently, these nine proteins are precursors of the mature mitochondrial forms. These particular data support the concept that processing of many of the cytoplasmically synthesized mitochondrial proteins requires a specific membrane potential, and that some of these proteins are modified intramitochondrially. However, using [35S]methionine incorporation techniques, not all labeled polypeptides disappear from mitochondria during such treatment. Feeding similarly radiolabeled flies with chloramphenicol, an inhibitor of mitochondrial protein synthesis, results in the disappearance of only one protein from the gel pattern with the concurrent appearance of a ‘new’ high-molecular-weight polypeptide. Collectively, these data show that a specific group of [35S]methionine-labeled mitochondrial proteins can be identified by selective inhibition of mitochondrial function in whole cell protein maps of adult D. melanogaster.  相似文献   

19.
Summary Maize mitochondria of cytoplasmic male sterile (cms-S) plants contain two linear episomes, S1 (6397 bp) and S2 (5453 bp). S1 contains three long open reading frames URF2 (1017 bp), URF3 (2782 bp) and URF4 (768 bp). We have demonstrated that the URF3 sequence of S1 encodes a protein with an apparent molecular weight of 103 kDa which is found in cms-S but undetectable in cms-T, cms-C or normal (fertile) mitochondria. A translational fusion containing the 5 terminus of the lacZ gene and 800 bp of the 3 end of URF3 was isolated from a cms-S mitochondrial genomic library in the expression vector gt11. Polyclonal antibodies raised against the resulting fusion protein immunoprecipitated a 103 kDa polypeptide from among [35S]-methionine-labeled cms-S mitochondrial proteins but not from normal mitochondrial proteins. The mitochondria of fertile F1 plants resulting from a cross between B37 cms-S and Ky21 (universal restorer) contain as much of this 103 kDa protein as is observed in sterile cms-S mitochondria. The mitochondria of fertile cytoplasmic revertants from cms-RD and cms-LM in a WF9 nuclear background also synthesized the 103 kDa protein. We conclude that the URF3 sequence of the S1 episome is expressed in vivo and that the presence of its gene product in maize mitochondria is not sufficient to confer the male sterile phenotype.  相似文献   

20.
Mitochondrial morphological defects are a common feature of diseased cardiac myocytes. However, quantitative assessment of mitochondrial morphology is limited by the time-consuming manual segmentation of electron micrograph (EM) images. To advance understanding of the relation between morphological defects and dysfunction, an efficient morphological reconstruction method is desired to enable isolation and reconstruction of mitochondria from EM images. We propose a new method for isolating and reconstructing single mitochondria from serial block-face scanning EM (SBEM) images. CDeep3M, a cloud-based deep learning network for EM images, was used to segment mitochondrial interior volumes and boundaries. Post-processing was performed using both the predicted interior volume and exterior boundary to isolate and reconstruct individual mitochondria. Series of SBEM images from two separate cardiac myocytes were processed. The highest F1-score was 95% using 50 training datasets, greater than that for previously reported automated methods and comparable to manual segmentations. Accuracy of separation of individual mitochondria was 80% on a pixel basis. A total of 2315 mitochondria in the two series of SBEM images were evaluated with a mean volume of 0.78 µm3. The volume distribution was very broad and skewed; the most frequent mitochondria were 0.04–0.06 µm3, but mitochondria larger than 2.0 µm3 accounted for more than 10% of the total number. The average short-axis length was 0.47 µm. Primarily longitudinal mitochondria (0–30 degrees) were dominant (54%). This new automated segmentation and separation method can help quantitate mitochondrial morphology and improve understanding of myocyte structure–function relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号