首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contractile function of the isolated right atrium was studied in male Wistar rats adapted to short-term stressor exposures at varying times after adaptation was completed. Adaptation to short-term stressor exposures induced a limited decrease in myocardial contractility immediately after adaptation was over. On the 3d day an additional reduction in the characteristics of contractile function was still observed. However, by the 5th day the characteristics recovered to the control level. At the same time adaptation completely prevented the derangement of myocardial contractility, induced by exposure to a prolonged stress. That protective effect was observed as early as adaptation was completed, on days 3 and 5 after adaptation, and became lessened on the 10th day. It is assumed that on the 5th day after adaptation the animals are in a postadaptation state where the untoward effect of adaptation disappears whereas the protective effect is demonstrable to a full extent. As a result all the characteristics of myocardial contractility following a prolonged stress on the 5th day after completion of short-term stressor exposures differed in no way from the control parameters.  相似文献   

2.
Adaptation to repeated short-term stress is known to prevent to a considerable extent the depression of the myocardial contractile function which usually develops under long-term stress. But the adaptation itself has a "cost", i. e. it results in limited but significant disturbances of myocardial contractile function. The present review documents the method of adaptation involving few actions with prolonged intervals between them. It has been established that such an adaptation per se does not induce any disturbances of contractile function. At the same time it prevents completely the depression of contractile function caused by stress.  相似文献   

3.
Effect of preliminary adaptation to immobilization stress with progressive duration from 15 min. to 1 h (every second day, 8 sessions) on the resistance of indices of myocardial energy metabolism and contractile function to acute hypoxic hypoxia and subsequent reoxygenation was studied. It was shown, that adaptation to short-term stress exposure by some way provided the retention of activities of important enzymes like creatine-phosphokinase and phosphorylase under the harmful action of acute hypoxia and subsequent reoxygenation. At the same time, the ATP restoration and the CP super-restoration were observed during reoxygenation. This effect, in its turn, was accompanied by a more pronounced super-restoration of the heart contractile function than in control.  相似文献   

4.
The study was aimed at the effect of prior adaptation to short-term stress exposure on changes in K(ATP)-channel activity induced by severe stress and the dependence of the changes on the state of endothelium which plays important role in autoregulation of the coronary flow and myocardial contractility. Experiments were conducted on isolation hearts of female rats. At the first step of experiment, the heart was perfused by Krebs-Henseleit solution; at the second step, the heart was perfused with the same solution in which glibenclamide (1 microM), glibenclamide with saponin or N(omega)-nitro-L-arginine (60 microM) methyl ether was added. During the experiment, the perfusion pressure was stepwise elevated from 40 to 120 mm Hg with 20 mm intervals (coronary autoregulation). Adaptation to short-term stress prevented development of stress-specific myocardial hyperperfusion (increased volumetric velocity of coronary flow against the background of decreased myocardial contractility) and the reduction of coronary dilation reserve. In coronary vessels of adapted rats, as distinct from control rats, basal glibenclamide-sensitive functional activity of K(ATP)-channels depended on presence and functional activity of endotheliocytes; it was reduced in presence of endothelium and increased after de-endothelization or NO synthase inhibition. In all experimental groups, the increase in glibenclamide-sensitive functional activity of K(ATP)-channels induced by NO synthase inhibition more than twice as great as after the endothelium denudation. In adapted animals, stress did not decrease the functional activity of K(ATP)-channels and their activity slightly depended on presence of endotheliocytes. In addition, the elevation of their functional activity characteristic of adaptation and evident after endothelium removal has vanished. Therefore adaptation to short-term stress exposure is associated with a potential increase in basal activity of K(ATP)-channels which enhances the potency of vascular dilation system and may apparently reduce the risk of high vascular tone when such important local regulatory system as the NO system is damaged.  相似文献   

5.
Models of adrenergic arrhythmias were produced on isolated rat heart under the adrenalin concentration in the perfusion solution of 5.10(-5) M. The rhythm disturbances were accompanied by a pronounced depression of contractile function. It was shown that preliminary adaptation of animals to short-term stress exposures reduced the duration of arrhythmias more than sixfold the contractile function, being maintained at a higher level than in control. The adaptation cardioprotective effect was compared with the effects of adaptation and propranolol appeared similar.  相似文献   

6.
The effect of the preliminary adaptation to short-term stress actions carried out under different conditions was studied in the myocardium and vascular smooth muscle damaged by long-term immobilization stress. The preliminary adaptation performed under "sparing" conditions was shown to protect more effectively the right atrial myocardium and portal vein against damages induced by long-term immobilization than that carried out under stringent conditions. The sparing adaptation allowed avoiding the appearance of the structural "price" of the adaptation, i.e. the depression of myocardial contractile function induced by adaptation itself.  相似文献   

7.
Studies of contractile function of an isolated right auricle in Wistar rats have demonstrated that long-term immobilization stress (fixation in the lying position for 6 h) results in the decreased extensibility of the auricle and pronounced depression of the developed tension. Preliminary adaptation of the animals to short-term immobilization stress (daily fixation in the lying position for 1 h over 10 days) per se insignificantly affects the extensibility and contractile function of the auricle but in effect it reduces its adrenoreactivity and completely prevents the post-stressor rigidity of the auricle and its function abnormality after long-term stress.  相似文献   

8.
The depression of cardiac contractility has been observed in rats during the immobilized stress in state of relative physiological rest and maximal load. In the animals pretreated with thyroid after stress the indexes of intensity and rate of myocardial contraction and relaxation didn't differ from the control, and during the maximal load the myocardium was characterized by the less expressed decrease of the structure functioning intensity and the higher rate of relaxation. The data obtained show that the physiological doses of thyroid hormones prevent the myocardium from contractile disorders during stress.  相似文献   

9.
J Linden 《FASEB journal》1987,1(2):119-124
Cholinergic agents decrease myocardial contractility in part by inhibiting adenylate cyclase (EC 4.6.1.1) activity. We have found that after a prolonged preincubation period (greater than 6 h), washout of cholinergic agents from embryonic chick hearts or cultured heart cells results in a persistent increase in their basal and catecholamine-stimulated cAMP content. Membranes prepared from pretreated cells have elevated basal, forskolin-, and catecholamine-stimulated adenylate cyclase activities. This myocardial adaptation to cholinergic agents is analogous to changes in nerve cells and other cell types after prolonged exposures to narcotics or other inhibitors of adenylate cyclase, respectively. A rapid (less than 5 min) adaptation response to cholinergic agents can also be demonstrated in heart cells by quickly blocking agonist action with atropine. Atropine alone has no effect, but after a brief preincubation period with agonists (methacholine or oxotremorine), the addition of atropine transiently enhances catecholamine-stimulated cAMP accumulation by 2.5-fold. These responses are absent in heart cells pretreated with pertussis toxin. The data indicate that the response is not mediated by the phosphoinositide pathway, which has been demonstrated to be insensitive to pertussis toxin in chick heart. Enhanced cAMP accumulation after termination of muscarinic agonist action may provide an explanation for the observation that acetylcholine sometimes produces biphasic contractile responses.  相似文献   

10.
It was shown that adaptation to stress exposure increased the resistance of nuclear DNA in myocardial cells to the damaging action of exogenous one-chain DNA (50 micrograms/ml). This protective effect was accompanied by a pronounced accumulation of heat shock proteins (hsp) 70 in nucleoplasm of myocardial cells from adapted animals. Possible mechanism of the DNA protective effect of adaptation and the role of hsp 70 are under discussion.  相似文献   

11.
Rats with compensatory hypertrophy of the heart and control animals were subjected to emotional painful stress (EPS). It was established that EPS led to the lowering of the main indicators of the contractile function of an isolated papillary muscle and reduced the resistance of the function under study to excess/Na+ and H+ forcing out Ca2+ from the binding sites on the sarcolemma. Compensatory hypertrophy of the heart itself was accompanied by a reduction of the myocardial contractility but the increase of the concentration of Na+ and H+ in the perfusate led to a far greater depression of the contractile parameters than in the myocardium of the control animals. Contractile function of the hypertrophied myocardium after stress turned out to be reduced to the level close to that seen in heart insufficiency.  相似文献   

12.
Peroxisome proliferator-activated receptor (PPAR)-gamma modulates substrate metabolism and inflammatory responses. In experimental rats subjected to myocardial ischemia-reperfusion (I/R), thiazolidinedione PPAR-gamma activators reduce infarct size and preserve left ventricular function. Troglitazone is the only PPAR-gamma activator that has been shown to be protective in I/R in large animals. However, because troglitazone contains both alpha-tocopherol and thiazolidinedione moieties, whether PPAR-gamma activation per se is protective in myocardial I/R in large animals remains uncertain. To address this question, 56 pigs were treated orally for 8 wk with troglitazone (75 mg x kg(-1) x day(-1)), rosiglitazone (3 mg x kg(-1) x day(-1)), or alpha-tocopherol (73 mg x kg(-1) x day(-1), equimolar to troglitazone dose) or received no treatment. Pigs were then anesthetized and subjected to 90 min of low-flow regional myocardial ischemia and 90 min of reperfusion. Myocardial expression of PPAR-gamma, determined by ribonuclease protection assay, increased with troglitazone and rosiglitazone compared with no treatment. Rosiglitazone had no significant effect on myocardial contractile function (Frank-Starling relations), substrate uptake, or expression of proinflammatory cytokines during I/R compared with untreated pigs. In contrast, preservation of myocardial contractile function and lactate uptake were greater and cytokine expression was attenuated in pigs treated with troglitazone or alpha-tocopherol compared with untreated pigs. Multivariate analysis indicated that presence of an alpha-tocopherol, but not a thiazolidinedione, moiety in the test compound was significantly related to greater contractile function and lactate uptake and lower cytokine expression during I/R. We conclude that PPAR-gamma activation is not protective in a porcine model of myocardial I/R. Protective effects of troglitazone are attributable to its alpha-tocopherol moiety. These findings, in conjunction with prior rat studies, suggest interspecies differences in the response to PPAR-gamma activation in the heart.  相似文献   

13.
These experiments examined the independent effects of short-term exercise and heat stress on myocardial responses during in vivo ischemia-reperfusion (I/R). Female Sprague-Dawley rats (4 mo old) were randomly assigned to one of four experimental groups: 1) control, 2) 3 consecutive days of treadmill exercise [60 min/day at 60-70% maximal O2 uptake (VO2 max)], 3) 5 consecutive days of treadmill exercise (60 min/day at 60-70% VO2 max), and 4) whole body heat stress (15 min at 42 degrees C). Twenty-four hours after heat stress or exercise, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was maintained for 30-min followed by a 30-min period of reperfusion. Compared with control, both heat-stressed animals and exercised animals (3 and 5 days) maintained higher (P < 0.05) left ventricular developed pressure (LVDP), maximum rate of left ventricular pressure development (+dP/dt), and maximum rate of left ventricular pressure decline (-dP/dt) at all measurement periods during both ischemia and reperfusion. No differences existed between heat-stressed and exercise groups in LVDP, +dP/dt, and -dP/dt at any time during ischemia or reperfusion. Both heat stress and exercise resulted in an increase (P < 0.05) in the relative levels of left ventricular heat shock protein 72 (HSP72). Furthermore, exercise (3 and 5 days) increased (P < 0.05) myocardial glutathione levels and manganese superoxide dismutase activity. These data indicate that 3-5 consecutive days of exercise improves myocardial contractile performance during in vivo I/R and that this exercise-induced myocardial protection is associated with an increase in both myocardial HSP72 and cardiac antioxidant defenses.  相似文献   

14.
Preliminary adaptation to short-term stress was shown to prevent the decrease in the heart fibrillation threshold and an increase in ectopic activity which is usually observed in experimental myocardial infarction. This protective effect involves an enhanced activity of the antioxidant system. Therefore, a synthetic antioxidant ionol was applied to prevent disturbances of the heart electrical stability in infarction. It was established that ionol completely prevents the decrease in the electrical threshold and the increase in ectopic activity of the heart in experimental infarction. Thus, it can be concluded that ionol possesses an antiarrhythmic effect.  相似文献   

15.
We hypothesized that exercise training preserves endothelium-dependent relaxation, lessens receptor-mediated constriction of coronary resistance arteries, and reduces myocardial contractile dysfunction in response to ischemia. After 10 wk of treadmill running or cage confinement, regional and global indexes of left ventricular contractile function were not different between trained and sedentary animals in response to three 15-min periods of ischemia (long-term; n = 17), one 5-min bout of ischemia (short-term; n = 18), or no ischemia (sham-operated; n = 24). Subsequently, coronary resistance vessels ( approximately 106 +/- 4 microm ID) were isolated and studied using wire myographs. Maximal ACh-evoked relaxation was approximately 25, 40, and 60% of KCl-induced preconstriction after the long-term, short-term, and sham-operated protocols, respectively, and was similar between groups. Maximal sodium nitroprusside-evoked relaxation also was similar between groups among all protocols, and vasoconstrictor responses to endothelin-1 and U-46619 were not different in trained and sedentary rats after short-term ischemia or sham operation. We did observe that, after long-term ischemia, maximal tension development in response to endothelin-1 and U-46619 was blunted (P < 0.05) in trained animals by approximately 70 and approximately 160%, respectively. These results support our hypothesis that exercise training lessens receptor-mediated vasoconstriction of coronary resistance vessels after ischemia and reperfusion. However, training did not preserve endothelial function of coronary resistance vessels, or myocardial contractile function, after ischemia and reperfusion.  相似文献   

16.
17.
Prolonged restriction of rat mobility resulting in stoppage of the body and heart mass growth was accompanied by the increased contraction and relaxation velocity of isolated papillary muscles. Absolute values of the poststressor decrease in the main parameters of myocardial contractility in prolonged hypokinesia-exposed animals did not substantially differ from those in controls. The resultant functional significance of such a depression was less dangerous. The data suggest that the increased resistance of the animal body, particularly of the heart muscle to the damaging effect of acute stress in prolonged hypokinesia is an essentially stressful state.  相似文献   

18.
To evaluate the cardioprotective potential of Inula racemosa in myocardial ischemic-reperfusion injury, Wistar male albino rats were randomly divided into four groups. The group I and II animals were administered saline orally {(sham, ischemia- reperfusion (I-R) control group)} and animals of group III and group IV received I. racemosa extract (100 mg/kg) for 30 days. On the 30th day, animals of I-R control and I. racemosa treated groups were underwent 45 min of ligation of left anterior descending coronary artery and were thereafter re-perfused for 60 min. In the I-R control group, a significant decrease of mean arterial pressure (MAP), heart rate (HR), contractility, (+)LVdP/dt and relaxation, (-)LVdP/dt and an increase of left ventricular end diastolic pressure (LVEDP) were observed. Subsequent to haemodynamic impairment and left ventricular contractile dysfunction, a significant decline was observed in endogenous myocardial antioxidants; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH). Increased lipid peroxidation characterized by malonaldialdehyde (MDA) formation along with depletion of cardiomyocytes specific enzymes, creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH) in I-R control group compared to sham group revealed I-R injury of heart. However, treatment with I. racemosa significantly restored the myocardial antioxidant status evidenced by increased SOD, CAT, GPx and GSH and prevented leakage of cardio-specific enzymes; CK-MB and LDH and favorably modulated the altered MAP, HR, (+)LVdP/dt, (-)LVdP/dt and LVEDP as compared to I-R control. Furthermore, I-R induced lipid peroxidation was significantly inhibited by I. racemosa treatment. These beneficial cardioprotective effects translated into significant improvement in cardiac function. In conclusion, our study has demonstrated that the cardioprotective effect of I. racemosa likely resulted to improved antioxidant status, haemodynamic and left ventricular contractile function subsequent to suppression of oxidative stress.  相似文献   

19.
In experiments on unanaesthetized rabbits, myoelectric activity (contractile activity index) in antral and pyloric parts of the stomach and in two sites of proximal duodenum was studied under stress induced by fastening rabbit to a table in supine position. The stressor impact induced inhibition of contractile activity in antrum and pylorus. The duodenal contractile activity after initial complete suppression overshot its initial level. Blockade of beta1/beta2-adrenoceptor with propranolol and blockade of alpha2-adrenoceptor with yohimbine did not influence qualitatively the pattern of the stressor responses of antrum and pylorus, and of the postpyloric part of duodenum. In conditions of unselective blockade of alpha-adrenoceptor with dihydroergotoxin there was no initial complete inhibition of duodenal contractile activity, and its strengthening was more expressed than in the control experiments. The received data indicate that the stressor inhibition of antral and pyloric contractile activity possibly results from activation of non-adrenergic inhibitory neurons of the enteric nervous system. The initial short-term suppression of duodenal motility resulted from its "adrenergic" inhibition which can also be a factor limiting the manifestation of stimulating effect of the humoral agent on the duodenal motility. In the period after release of the animal, index of antral and pyloric contractile activity did not significantly differ from its initial level; after beta1/beta2-adrenoceptor blockade in antral and after alpha2-adrenoceptor blockade or nonselective alpha-blockade in antral and pyloric parts of the stomach, there was decrease of contractile activity compared with its initial level; after alpha2- or beta1/beta2-adrenoceptor blockade there was no poststressor exceeding of the initial level of the duodenal contractile activity, observed in the control experiments.  相似文献   

20.
It was established on isolated rat hearts that adaptation of the organism to stress exposure effectively limits toxic effect of chronic rifampicin administration (7 mg/kg/day for 8 days) and does not affect the depression of contractile function induced by chronic polymyxin B administration (0.12 mg/kg/day for 8 days). Possible mechanism of the effect of organism's adaptation to stress on the resistance of heart to antibiotics is under discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号