首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paramyxovirus hemagglutinin-neuraminidase (HN) functions in virus attachment to cells, cleavage of sialic acid from oligosaccharides, and stimulating membrane fusion during virus entry into cells. The structural basis for these diverse functions remains to be fully understood. We report the crystal structures of the parainfluenza virus 5 (SV5) HN and its complexes with sialic acid, the inhibitor DANA, and the receptor sialyllactose. SV5 HN shares common structural features with HN of Newcastle disease virus (NDV) and human parainfluenza 3 (HPIV3), but unlike the previously determined HN structures, the SV5 HN forms a tetramer in solution, which is thought to be the physiological oligomer. The sialyllactose complex reveals intact receptor within the active site, but no major conformational changes in the protein. The SV5 HN structures do not support previously proposed models for HN action in membrane fusion and suggest alternative mechanisms by which HN may promote virus entry into cells.  相似文献   

2.
1. Leucine aminopeptidase (EC 3-4-11-1) from bovine eye lens was spin-labeled at the most reactive thiol groups with 2,2,6,6-tetramethyl-4-[2-iodoacetamido]-piperidine-1-oxyl. 2. Electron spin resonance spectra show two spectral parts corresponding to two local conformational states in the environment of bound label. One state (A) exhibits a strong immobilizing effect on the mobility of the bound label whereas the other one (B) immobilizes weakly. Independently on the degree of labeling a ratio of A:B approximately 4:1 was estimated. In B a hydrophobic environment of label was observed. 3. Treatment of leucine aminopeptidase by 6.2 M urea leads to the following structural changes. a) An additional weakly immobilizing conformational state (B') with reduced hydrophobic interactions and increased mobility representing an unfolded conformational state appears. B' shows a time-dependent increase of its extent at the expense of B and A' (half conversion time about 0.5 h). The extent of this conformational change is larger, if the enzyme is additionally complexed with Mn2+. b) Mn2+ complexed with the protein is partly released producting hydrated Mn2+. c) After withdrawal of urea the observed conformational changes in leucine aminopeptidase are fully reversible, giving the initial ratio of A:B approximately 4:1 even after long incubation. 4. 6.2 M urea is not able to destroy the strongly immobilizing conformational state A completely.  相似文献   

3.
Two important glycoproteins on the influenza virus membrane, hemagglutinin (HA) and neuraminidase (NA), are relevant to virus replication. As previously reported, HA has a substrate specificity towards SIA-2,3-GAL-1,4-NAG (3SL) and SIA-2,6-GAL-1,4-NAG (6SL) glycans, while NA can cleave both types of linkages. However, the substrate binding into NA and its preference are not well understood. In this work, the glycan binding and specificity of human and avian NAs were evaluated by classical molecular dynamics (MD) simulations, whilst the conformational diversity of 3SL avian and 6SL human glycans in an unbound state was investigated by replica exchange MD simulations. The results indicated that the 3SL avian receptor fits well in the binding cavity of all NAs and does not require a conformational change for such binding compared to the flexible shape of the 6SL human receptor. From the QM/MM-GBSA binding free energy and decomposition free energy data, 6SL showed a much stronger binding towards human NAs (H1N1, H2N2 and H3N2) than to avian NAs (H5N1 and H7N9). This suggests that influenza NAs have a substrate specificity corresponding to their HA, indicating the functional balance between the two important glycoproteins. Both linkages show distinct glycan topologies when complexed with NAs, while the flexibility of torsion angles between GAL and NAG in 6SL results in the various shapes of glycan and different binding patterns. Lower conformational diversities of both glycans when bound to NA compared to the unbound state were found, and were required in order to be accommodated within the NA cavity.

Communicated by Ramaswamy H. Sarma  相似文献   


4.
The guanine nucleotide-binding protein Ras occurs in solution in two different conformational states, state 1 and state 2 with an equilibrium constant K(12) of 2.0, when the GTP analogue guanosine-5'-(beta,gamma-imido)triphosphate or guanosine-5'-(beta,gamma-methyleno)triphosphate is bound to the active centre. State 2 is assumed to represent a strong binding state for effectors with a conformation similar to that found for Ras complexed to effectors. In the other state (state 1), the switch regions of Ras are most probably dynamically disordered. Ras variants that exist predominantly in state 1 show a drastically reduced affinity to effectors. In contrast, Ras(wt) bound to the GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) leads to (31)P NMR spectra that indicate the prevalence of only one conformational state with K(12) > 10. Titration with the Ras-binding domain of Raf-kinase (Raf-RBD) shows that this state corresponds to effector binding state 2. In the GTPgammaS complex of the effector loop mutants Ras(T35S) and Ras(T35A) two conformational states different to state 2 are detected, which interconvert over a millisecond time scale. Binding studies with Raf-RBD suggest that both mutants exist mainly in low-affinity states 1a and 1b. From line-shape analysis of the spectra measured at various temperatures an activation energy DeltaH(|) (1a1b) of 61 kJ.mol(-1) and an activation entropy DeltaS(|) (1a1b) of 65 J.K(-1).mol(-1) are derived. Isothermal titration calorimetry on Ras bound to the different GTP-analogues shows that the effective affinity K(A) for the Raf-RBD to Ras(T35S) is reduced by a factor of about 20 compared to the wild-type with the strongest reduction observed for the GTPgammaS complex.  相似文献   

5.
Cui G  Merz KM 《Biochemistry》2007,46(43):12375-12381
Studies aimed at elucidating the reaction mechanism of farnesyltransferase (FTase), which catalyzes the prenylation of many cellular signaling proteins including Ras, has been an active area of research. Much is known regarding substrate binding and the impact of various catalytic site residues on catalysis. However, the molecular level details regarding the conformational rearrangement of farnesyldiphosphate (FPP), which has been proposed via structural analysis and mutagenesis studies to occur prior to the chemical step, is still poorly understood. Following on our previous computational characterization of the resting state of the FTase ternary complex, the thermodynamics of the conformational rearrangement step in the absence of magnesium was investigated for the wild type FTase and the Y300Fbeta mutant complexed with the peptide CVIM. In addition, we also explored the target dependence of the conformational activation step by perturbing isoleucine into a leucine (CVLM). The calculated free energy profiles of the proposed conformational transition confirm the presence of a stable intermediate state, which was identified only when the diphosphate is monoprotonated (FPP2-). The farnesyl group in the computed intermediate state assumes a conformation similar to that of the product complex, particularly for the first two isoprene units. We found that Y300beta can readily form hydrogen bonds with either of the phosphates of FPP. Removing the hydroxyl group on Y300beta does not significantly alter the thermodynamics of the conformational transition, but shifts the location of the intermediate farther away from the nucleophile by 0.5 A, which suggests that Y300beta facilitate the reaction by stabilizing the chemical step. Our results also showed an increased transition barrier height for CVLM (1.5 kcal/mol higher than that of CVIM). Although qualitatively consistent with the findings from the recent kinetic isotope experiments by Fierke and co-workers, the magnitude is not large enough to affect the rate-limiting step.  相似文献   

6.
We used frequency-domain measurements of fluorescence resonance energy transfer to measure the distribution of distances between Trp-19 of melittin and a 1-dimethylamino-5-sulfonylnaphthalene (dansyl) residue on the N-terminal-alpha-amino group. Distance distributions were obtained for melittin free in solution and when complexed with calmodulin (CaM), troponin C (TnC), or palmitoyloleoyl-L-alpha-phosphatidylcholine (POPC) vesicles. A wide range of donor (Trp-19)-to-acceptor (dansyl) distances was found for free melittin, which is consistent with that expected for the random coil state, characterized by a Gaussian width (full width at half maxima) of 28.2 A. In contrast, narrow distance distributions were found for melittin complexed with CaM, 8.2 A, or with POPC vesicles, 4.9 A. A somewhat wider distribution was found for the melittin complex with TnC, 12.8 A, suggesting the presence of heterogeneity in the mode of binding between melittin and TnC. For all the complexes the mean Trp-19 to dansyl distance was near 20 A. This value is somewhat smaller than expected for the free alpha-helical state of melittin, suggesting that binding with CaM or TnC results in a modest decrease in the length of the melittin molecule.  相似文献   

7.
Choi Y  Jung S 《Carbohydrate research》2004,339(11):1961-1966
Molecular dynamics (MD) simulations were performed for the prediction of chiral discrimination of N-acetylphenylalanine enantiomers by cyclomaltoheptaose (beta-cyclodextrin, beta-CD). Binding free energies and various conformational properties were obtained using by the MM-PBSA (molecular mechanics Poisson-Boltzmann/surface area) approach. The calculated relative difference (DeltaDeltabinding) of binding free energy was in fine agreement with the experimentally determined value. The difference of rotameric distributions of guest N-acetylphenylalanine enantiomers complexed with the host, beta-CD, was observed after the conformational analyses, suggesting that the conformational changes of guest captured within host cavity would be a decisive factor for enantiodifferentiation at a molecular level.  相似文献   

8.
Galectins are β‐galactoside binding proteins which have the ability to serve as potent antitumor, cancer biomarker, and induce tumor cell apoptosis. Agrocybe cylindracea galectin (ACG) is a fungal galectin which specifically recognizes α(2,3)‐linked sialyllactose at the cell surface that plays extensive roles in the biological recognition processes. To investigate the change in glycan‐binding specificity upon mutations, single point and double point site‐directed in silico mutations are performed at the binding pocket of ACG. Molecular dynamics (MD) simulation studies are carried out for the wild‐type (ACG) and single point (ACG1) and double point (ACG2) mutated ACGs to investigate the dynamics of substituted mutants and their interactions with the receptor sialyllactose. Plausible binding modes are proposed for galectin–sialylglycan complexes based on the analysis of hydrogen bonding interactions, total pair‐wise interaction energy between the interacting binding site residues and sialyllactose and binding free energy of the complexes using molecular mechanics–Poisson–Boltzmann surface area. Our result shows that high contribution to the binding in different modes is due to the direct and water‐mediated hydrogen bonds. The binding specificity of double point mutant Y59R/N140Q of ACG2 is found to be high, and it has 26 direct and water‐mediated hydrogen bonds with a relatively low‐binding free energy of −47.52 ± 5.2 kcal/mol. We also observe that the substituted mutant Arg59 is crucial for glycan‐binding and for the preference of α(2,3)‐linked sialyllactose at the binding pocket of ACG2 galectin. When compared with the wild‐type and single point mutant, the double point mutant exhibits enhanced affinity towards α(2,3)‐linked sialyllactose, which can be effectively used as a model for biological cell marker in cancer therapeutics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Correlated enzymatic conformational fluctuations are shown to contribute to the rate of enhancement achieved during catalysis. Cytidine deaminase serves as a model system. Crystallographic temperature factor data for this enzyme complexed with substrate analog, transition-state analog, and product are available, thereby establishing a measure of atomic scale conformational fluctuations along the (approximate) reaction coordinate. First, a neural network-based algorithm is used to visualize the decreased conformational fluctuations at the transition state. Second, a dynamic diffusion equation along the reaction coordinate is solved and shows that the flux velocity through the associated enzymatic conformation space is greatest at the transition state. These results suggest (1) that there are both dynamic and energetic restrictions to conformational fluctuations at the transition state, (2) that enzymatic catalysis occurs on a fluctuating potential energy surface, and (3) a form for the potential energy. The Michaelis-Menten equations are modified to describe catalysis on this fluctuating potential energy profile, leading to enhanced catalytic rates when fluctuations along the reaction coordinate are appropriately correlated. This represents a dynamic tuning of the enzyme for maximally effective transformation of the ES complex into EP.  相似文献   

10.
The guanine nucleotide-binding protein Ras exists in solution in two different conformational states when complexed with different GTP analogs such as GppNHp or GppCH(2)p. State 1 has only a very low affinity to effectors and seems to be recognized by guanine nucleotide exchange factors, whereas state 2 represents the high affinity effector binding state. In this work we investigate Ras in complex with the physiological nucleoside triphosphate GTP. By polarization transfer (31)P NMR experiments and effector binding studies we show that Ras(wt)·Mg(2+)·GTP also exists in a dynamical equilibrium between the weakly populated conformational state 1 and the dominant state 2. At 278 K the equilibrium constant between state 1 and state 2 of C-terminal truncated wild-type Ras(1-166) K(12) is 11.3. K(12) of full-length Ras is >20, suggesting that the C terminus may also have a regulatory effect on the conformational equilibrium. The exchange rate (k(ex)) for Ras(wt)·Mg(2+)·GTP is 7 s(-1) and thus 18-fold lower compared with that found for the Ras·GppNHp complex. The intrinsic GTPase activity substantially increases after effector binding for the switch I mutants Ras(Y32F), (Y32R), (Y32W), (Y32C/C118S), (T35S), and the switch II mutant Ras(G60A) by stabilizing state 2, with the largest effect on Ras(Y32R) with a 13-fold increase compared with wild-type. In contrast, no acceleration was observed in Ras(T35A). Thus Ras in conformational state 2 has a higher affinity to effectors as well as a higher GTPase activity. These observations can be used to explain why many mutants have a low GTPase activity but are not oncogenic.  相似文献   

11.
A 21-mer oligodeoxynucleotide complementary to the polyadenylation signal for human hepatitis B virus (HBV) was complexed to a soluble DNA-carrier system that is targetable to hepatocytes via asialoglycoprotein receptors present on those cells. A cell line, HepG2 (2.2.15) that possesses asialoglycoprotein receptors and is permanently transfected with hepatitis B virus (ayw subtype) was exposed to complexed antisense DNA or controls. In the presence of complexed antisense DNA, the concentration of hepatitis B surface antigen in medium was 80% lower than controls after 24 h. Furthermore, during the next 6 days, there was no significant increase in surface antigen concentration in the presence of complexed antisense DNA. The inhibition could be effectively blocked by competition with an excess of free asialoglycoprotein. Total protein synthesis remained unchanged by exposure to complexed antisense sequences under identical conditions. In addition, HBV DNA in the medium and cell layers after 24-h exposure to complexed antisense sequences was 80% lower than in controls. The data indicate that antisense oligonucleotides complexed by a soluble DNA-carrier system can be targeted to cells via asialoglycoprotein receptors resulting in specific inhibition of hepatitis B viral gene expression and replication.  相似文献   

12.
Soybean beta-amylase (EC 3.2.1.2) has been crystallized both free and complexed with a variety of ligands. Four water molecules in the free-enzyme catalytic cleft form a multihydrogen-bond network with eight strategic residues involved in enzyme-ligand hydrogen bonds. We show here that the positions of these four water molecules are coincident with the positions of four potential oxygen atoms of the ligands within the complex. Some of these waters are displaced from the active site when the ligands bind to the enzyme. How many are displaced depends on the shape of the ligand. This means that when one of the four positions is not occupied by a ligand oxygen atom, the corresponding water remains. We studied the functional/structural role of these four waters and conclude that their presence means that the conformation of the eight side chains is fixed in all situations (free or complexed enzyme) and preserved from unwanted or forbidden conformational changes that could hamper the catalytic mechanism. The water structure at the active pocket of beta-amylase is therefore essential for providing the ligand recognition process with plasticity. It does not affect the protein active-site geometry and preserves the overall hydrogen-bonding network, irrespective of which ligand is bound to the enzyme. We also investigated whether other enzymes showed a similar role for water. Finally, we discuss the potential use of these results for predicting whether water molecules can mimic ligand atoms in the active center.  相似文献   

13.
Murine polyomavirus (Py) infection initiates by the recognition of cell membrane molecules containing terminal sialic acid (SA) residues through specific binding pockets formed at the major capsid protein VP1 surface. VP1 Pockets 1, 2, and 3 bind terminal SA, Gal, and second branched SA, respectively. The consequence of recognition on viral cell entry remains elusive. In this work, we show that preincubation of Py with soluble compounds within Pocket 1 (N-acetyl or N-glycolyl neuraminic acids) increases Py cell binding and infectivity in murine 3T6 fibroblasts. In contrast, Gal does not significantly alter Py binding nor infectivity, whereas sialyllactose, in Pockets 1 and 2, decreases cell binding and infectivity. Binding experiments with Py virus-like particles confirmed the direct involvement of VP1 in this effect. To determine whether such results could reflect VP1 conformational changes induced by SA binding, protease digestion assays were performed after pretreatment of Py or virus-like particles with soluble receptor fragments. Binding of SA with the VP1 Pocket 1, but not of compounds interacting with Pocket 2, was associated with a transition of this protein from a protease-sensitive to a protease-resistant state. This effect was transmitted to the minor capsid proteins VP2 and VP3 in virus particles. Attachment of Py to cell monolayers similarly led to a VP1 trypsin-resistant pattern. Taken together, these data present evidence that initial binding of Py to terminal SA induces conformational changes in the viral capsid, which may influence subsequent virus cell entry steps.  相似文献   

14.
The transmembrane protein CD44, which has been implicated in cancer biology and inflammation, mediates cell adhesion through multimeric interactions with the linear extracellular glycosaminoglycan hyaluronan (HA; in megadaltons). Affinity switching of CD44 from a low-affinity state to a high-affinity state is required for normal CD44 physiological function; crystal structures of the CD44 hyaluronan binding domain complexed with HA oligomers point to a conformational rearrangement at a binding site loop, leading to the formation of direct contact between the oligomer and an arginine side chain as a molecular basis for affinity switching. Here, all-atom explicit-solvent molecular dynamics simulations were used to characterize the dynamics and thermodynamics of oligomeric hyaluronan (oHA) and its two crystallographic complexes with the CD44 hyaluronan binding domain: the “A-form,” which lacks arginine-HA close contact, and the “B-form,” which has direct arginine side-chain-HA contact. From the simulations, the conformational properties of oHA are essentially unaltered in going from the unbound state to either the A-form or the B-form bound state, with the oligomer retaining its flexibility when bound and with only two of the eight monosaccharides in the oligomer maintaining uninterrupted contact with the protein. Biased simulations revealed that altering the backbone conformation of a tyrosine residue in the arginine loop can induce the A-form → B-form conformational transition and that a large free-energy barrier prevents ready interconversion between the two forms, thereby suggesting that the tyrosine backbone forms a molecular switch.  相似文献   

15.
Understanding the structural basis of recognition between antigen and antibody requires the structural comparison of free and complexed components. Previously, we have reported the crystal structure of the complex between Fab fragment of murine monoclonal antibody 2A8 (Fab2A8) and Plasmodium vivax P25 protein (Pvs25) at 3.2 Å resolution. We report here the crystallization and X-ray structure of native Fab2A8 at 4.0 Å resolution. The 2A8 antibody generated against Pvs25 prevents the formation of P. vivax oocysts in the mosquito, when assayed in membrane feeding experiment.Comparison of native Fab2A8 structure with antigen bound Fab2A8 structure indicates the significant conformational changes in CDR-H1 and CDR-H3 regions of VH domain and CDR-L3 region of VL domain of Fab2A8. Upon complex formation, the relative orientation between VL and VH domains of Fab2A8 is conserved, while significant differences are observed in elbow angles of heavy and light chains. The combing site residues of complexed Fab2A8 exhibited the reduced temperature factor compared to native Fab2A8, suggesting a loss of conformational entropy upon antigen binding.  相似文献   

16.
Y Gaudin  H Raux  A Flamand    R W Ruigrok 《Journal of virology》1996,70(11):7371-7378
The glycoprotein (G) of rabies virus assumes at least three different conformations: the native state detected at the viral surface above pH 7, the activated state involved in the first step of the fusion process, and the fusion-inactive conformation (I). A new category of monoclonal antibodies (MAbs) which recognized specifically the I conformation at the viral surface has recently been described. These MAbs (17A4 and 29EC2) became neutralizing when the virus was preincubated at acidic pH to induce the conformational change toward the I state of G. Mutants escaping neutralization were then selected. In this study, we have investigated the fusion and the low-pH-induced fusion inactivation properties of these mutants. All of these mutants have fusion properties similar to those of the CVS parental strain, but five mutants (E282K, M44I, M44V, V392G, and M396T) were considerably slowed in their conformational change leading to the I state. These mutants allow us to define regions that control this conformational change. These results also reinforce the idea that structural transition toward the I state is irrelevant to the fusion process. Other mutations in amino acids 10, 13, and 15 are probably located in the epitopes of selecting MAbs. Furthermore, in electron microscopy, we observed a hexagonal lattice of glycoproteins at the viral surface of mutants M44I and V392G as well as strong cooperativity in the conformational change toward the I state. This finding demonstrates the existence of lateral interactions between the spikes of a rhabdovirus.  相似文献   

17.
CP320626 has been identified as a potent inhibitor, synergistic with glucose, of human liver glycogen phosphorylase a (LGPa), a possible target for type 2 diabetes therapy. CP320626 is also a potent inhibitor of human muscle GPa. In order to elucidate the structural basis of the mechanism of CP320626 inhibition, the structures of T state rabbit muscle GPa (MGPa) in complex with glucose and in complex with both glucose and CP320626 were determined at 2.0 A resolution, and refined to crystallographic R values of 0.179 (R(free)=0.218) and 0.207 (R(free)=0.235), respectively. CP320626 binds at the new allosteric site, some 33 A from the catalytic site, where glucose binds. The binding of CP320626 to MGPa does not promote extensive conformational changes except for small shifts of the side chain atoms of residues R60, V64, and K191. Both CP320626 and glucose promote the less active T state, while structural comparisons of MGPa-glucose-CP320626 complex with LGPa complexed with a related compound (CP403700) and a glucose analogue inhibitor indicate that the residues of the new allosteric site, conserved in the two isozymes, show no significant differences in their positions.  相似文献   

18.
Glycoconjugate polystyrenes bearing sialyllactose moieties were prepared via a simple method from a mixture of 2-6 and 2-3 linked sialyllactose isomers of bovine milk origin. The reducing end of sialyllactose was converted to an amino function with ammonium hydrogen carbonate and then coupled with p -vinylbenzoyl chloride. The resulting styrene derivative substituted with sialyllactose via an amide linkage was polymerized with ammonium peroxodisulfate and N,N,N,N -tetramethylethylenediamine in water at 30 °C. The interaction of the glycopolymer with influenza A and B viruses was investigated by three different methods. The glycopolymer inhibited the hemagglutination of influenza A virus (PR/8/34) and its activity was 103 times higher than that of the oligosaccharide itself. The cytopathic effect of virus-infected MDCK (Madine-Darby canine kidney) cells was inhibited by the glycopolymer. The homopolymer showed 102 times higher inhibitory activity than naturally-occurring fetuin. It was also found that various viruses could be trapped by the glycopolymer adsorbed on a polystyrene surface. The inhibitory and trapping activities of the glycopolymers were correlated with the sialyl linkage specificities of the virus strains.  相似文献   

19.
Weber T  Schaffhausen B  Liu Y  Günther UL 《Biochemistry》2000,39(51):15860-15869
The N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K) has a higher affinity for a peptide with two phosphotyrosines than for the same peptide with only one. This unexpected result was not observed for the C-terminal SH2 from the same protein. NMR structural analysis has been used to understand the behavior of the N-SH2. The structure of the free SH2 domain has been compared to that of the SH2 complexed with a doubly phosphorylated peptide derived from polyomavirus middle T antigen (MT). The structure of the free SH2 domain shows some differences from previous NMR and X-ray structures. In the N-SH2 complexed with a doubly phosphorylated peptide, a second site for phosphotyrosine interaction has been identified. Further, line shapes of NMR signals showed that the SH2 protein-ligand complex is subject to temperature-dependent conformational mobility. Conformational mobility is also supported by the spectra of the ligand peptide. A binding model which accounts for these results is developed.  相似文献   

20.
Chymotrypsin inhibitor 2 (CI-2), a serine proteinase inhibitor from barley seeds, has been crystallized and its three-dimensional structure determined at 2.0-A resolution by the molecular replacement method. The structure has been refined by restrained-parameter least-squares methods to a crystallographic R factor (= sigma parallel Fo magnitude of-Fo parallel/sigma magnitude of Fo) o of 0.198. CI-2 is a member of the potato inhibitor 1 family. It lacks the characteristic stabilizing disulfide bonds of most other members of serine proteinase inhibitor families. The body of CI-2 shows few conformational changes between the free inhibitor and the previously reported structure of CI-2 in complex with subtilisin Novo [McPhalen, C.A., Svendsen, I., Jonassen, I., & James, M.N.G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7242-7246]. However, the reactive site loop has some significant conformational differences between the free inhibitor and its complexed form. The residues in this segment of polypeptide exhibit relatively large thermal motion parameters and some disorder in the uncomplexed form of the inhibitor. The reactive site bond is between Met-59I and Glu-60I in the consecutive sequential numbering of CI-2 (Met-60-Glu-61 according to the alignment of Svendsen et al. [Svendsen, I., Hejgaard, J., & Chavan, J.K. (1984) Carlsberg Res. Commun. 49, 493-502]). The network of hydrogen bonds and electrostatic interactions stabilizing the conformation of the reactive site loop is much less extensive in the free than in the complexed inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号