首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Aldehyde dehydrogenase from bovine liver has been purified to homogeneity. Amino acid composition showed a high content of cysteine of 32 mol/mol enzyme. The enzyme is composed of four identical subunits as judged by sodium dodecyl sulfate gel electrophoresis and end-group analysis. The molecular weight was determined to be 220 000 +/- 10 000 by sedimentation equilibrium analysis in an analytical ultracentrifuge. The Michaelis constants for NAD+, glyceraldehyde and acetaldehyde were found to be 47 micron, 170 micron and 130 micron, respectively.  相似文献   

2.
D-Ribulose-1,5-bisphosphate (RuBP) carboxylase has been purified from glutamate-CO2-S2O3(2)-grown Thiobacillus intermedius by pelleting the enzyme from the high-speed supernatant and by intermediary crystallization followed by sedimentation into a discontinuous 0.2 to 0.8 M sucrose gradient. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels of several acrylamide concentrations, sedimentation velocity and equilibrium measurements, and electron microscopic observations of negatively stained preparations. The molecular weights of the enzyme determined by sedimentation equilibrium and light-scattering measurements averaged 462,500 +/- 13,000. The enzyme consisted of closely similar or identical polypeptide chains of a molecular weight of 54,500 +/- 5,450 determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The S(0)20,w of the enzyme was 18.07S +/- 0.22. Electron microscopic examination suggested that the octomeric enzyme (inferred from the molecular measurements mentioned) had a cubical structure. The specific activity of the enzyme was 2.76 mumol of RuBP-dependent CO2 fixed/min per mg of protein (at pH 8 and 30 C), and the turnover number in terms of moles of CO2 fixed per mole of catalytic site per second was 2.6. The enzyme was stable for 3 months at -20 C and at least 4 weeks at 0 C. The apparent Km for CO2 was 0.75 mM, and Km values for RuBP and Mg2+ were 0.076 and 3.6 mM, respectively. Dialyzed enzyme could be fully reactivated by the addition of 20 mM Mg2+ and partially reactivated by 20 mM Co2+, but Cd2+, Mn2+, Ca2+, and Zn2+ had no effect. The compound 6-phosphogluconate was a linear competitive inhibitor with respect to RuBP when it had been preincubated with enzyme, Mg2+, and HCO3-.  相似文献   

3.
Aspartase [L-aspartate ammonia-lyase, EC 4.3.1.1] of Pseudomonas fluorescens was highly purified to homogeneity and crystallized. The purified enzyme sedimented as a monodisperse entity upon ultracentrifugation with a s0(20),w value of 8.6S. Upon polyacrylamide gel electrophoresis (PAGE), the enzyme migrated as a single band. The molecular weight of the native enzyme was 173,000 +/- 3,000, as determined by sedimentation equilibrium analysis, and that of the enzyme subunit was determined to be 50,000 +/- 1,500 by sodium dodecyl sulfate (SDS)-PAGE. Cross-linking experiments using dimethyl suberimidate followed by SDS-PAGE indicated that the native enzyme was composed of four subunits with identical molecular weight. The amino acid composition of the enzyme was determined.  相似文献   

4.
Adenine phosphoribosyltransferase (EC 2.4.2.7) has been purified 55,000-fold from normal human erythrocytes. The native molecular weight of the enzyme is 38,200 as determined by sedimentation equilibrium centrifugation. The subunit molecular weight is 18,000 as determined by sodium dodecyl sulfate gel electrophoresis and 17,000 as determined by gel filtration in guanidine hydrochloride, suggesting that the enzyme is a dimer in its native state. Cross-linking the enzyme with dimethylsuberimidate confirms the dimeric structure and peptide mapping data suggested that the subunits are quite similar if not identical. The amino acid composition reveals that 33% of the residues are hydrophobic.  相似文献   

5.
Fatty acid synthetase was purified 13-fold from lactating rabbit mammary glands by a procedure which involved chromatography on DEAE-cellulose, ammonium sulphate precipitation and gel filtration on Sepharose 4B. The preparation was completed within two days and over 100 mg of enzyme was isolated from 100--150 g of mammary tissue, which represented a yield of over 40%. The preparation was homogeneous by the criteria of polyacrylamide gel electrophoresis and ultracentrifugal analysis. The sedimentation constant, S20,w was 13.3 S, the absorption coefficient, A280nm1%, measured refractometrically was 10.0 +/- 0.1, and the amino acid composition was determined. The subunit molecular weight determined by gel electrophoresis in the presence of sodium dodecyl sulphate was 252,000 +/- 6,000, and the molecular weight of the native enzyme measured by sedimentation equilibrium was 515,000. These experiments indicate that at the concentrations which exist in mammary tissue (2--4 mg/ml) fatty acid synthetase is a dimer. The purified enzyme did however show a tendency to dissociate to a monomeric 9-9S species on storage for several days or following exposure to a low ionic strength buffer at pH 8.3. There was only a small quantity of alkali labile phosphate (0.2 molecules per subunit) bound covalently to the purified enzyme. Acetyl-CoA carboxylase was purified 300-fold in a 50% yield within 24 h by ammonium sulphate and polyethylene glycol precipitations [Hardie, D.G. and Cohen, P. (1978) FEBS Lett. 91, 1--7]. The preparation was in a state approaching homogeneity as judged by polyacrylamide gel electrophoresis, gel filtration on Sepharose 4B and ultracentrifugal analysis. The sedimentation constant, S20,w, was 50.5 S, the absorption index, A280nm1%, was 14.5 +/- 0.7, and the amino acid composition was determined. The subunit molecular weight of acetyl-CoA carboxylase determined by gel electrophoresis in the presence of sodium dodecyl sulphate was identical to that of fatty acid synthetase (252,000) as shown by electrophoresis of a mixture of the two proteins. The preparations also contained two minor components of molecular weight 235,000 and 225,000, which appear to be derived from the major species of mol. wt 252,000. A large emount of phosphate (3.2 molecules per subunit) was found to be bound covalently to the purified enzyme. The properties of fatty acid synthetase and acetyl-CoA carboxylase are compared to those obtained by other workers.  相似文献   

6.
The purification of NADP-linked isocitrate dehydrogenase from ox heart mitochondria is described. The molecular weight from gel filtration, sedimentation equilibrium and gel electrophoresis is 90000+/-4000, and there are two subunits in the molecule each of which binds NADPH with enhancement of the coenzyme fluorescence. The amino-acid composition is reported, and the absorption coefficient, A1/280%, estimated from dry weight measurements is 11.8 cm-1.  相似文献   

7.
Kidney alkaline phosphatase was purified to homogeneity. It is a glycoprotein of about 172,000 molecular weight. Analyses of the subunit structure by sedimentation equilibrium in 6 M guanidine hydrochloride and by gel electrophoresis in sodium dodecyl sulfate indicate that the alkaline phosphatase is a dimer comprising two very similar or identical subunits of about 87,000 molecular weight. The native enzyme contains 4.5 +/- 0.2 g atoms of zinc per mol of protein. Reconstitution experiments from the apophosphatase show that binding of 4 Zn2+ per mol of dimer is essential for full activity. The kinetic data of Zn2+ binding to the apoprotein require at least a two-step mechanism, in which one of the steps corresponds to a conformational change within the enzyme. This paper also presents data concerning amino acid composition, sugar content, enzyme stability, absorbance index, and sedimentation velocity.  相似文献   

8.
Glutamate dehydrogenase has been purified to near-homogeneity from mature larvae of Drosophila melanogaster. The enzyme has a molecular weight of 347,000 measured by sucrose gradient sedimentation and 343,000 measured by variable-porosity acrylamide gel electrophoresis. Electrophoresis under denaturing conditions showed that the enzyme consists of six subunits of molecular weight 57,000. The structural gene for GDH has been mapped at 81.7±0.8 on the third chromosome by means of an electrophoretic variant.This work was supported by CNR Contract 76-01961-04.  相似文献   

9.
Avian liver p-hydroxyphenylpyruvate hydroxylase (EC 1.13.11.27) was purified to a 1000-fold increase in specific activity over crude supernatant, utilizing a substrate analogue, o-hydroxyphenylpyruvate, to stabilize the enzyme. The preparation was homogeneous with respect to sedimentation with a sedimentation velocity (s20,w) of 5.3 S. The molecular weight of the enzyme was determined to be 97,000 +/- 5,000 by sedimentation equilibrium, and the molecular weight of the subunits was determined to be 49,000 +/- 3,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis revealed heterogeneity of the purified enzyme. The multiple molecular forms were separable by isoelectric focusing, and their isoelectric points ranged from pH 6.8 to 6.0. The amino acid compositions and tryptic peptide maps of the three forms isolated by isoelectric focusing were very similar. The forms of the enzyme had the same relative activity toward p-hydroxyphenylpyruvate and phenylpyruvate. Conditions which are known to accelerate nonenzymic deamidation of proteins caused interconversion of the multiple molecular forms. Iron was the only transition metal found to be associated with the purified enzyme at significant levels. The amount of enzyme-bound iron present in equilibrium-dialyzed samples was equivalent to 1 atom of iron per enzyme subunit. Purification of the enzyme activity correlated with the purification of the enzyme-bound iron. An EPR scan of the purified enzyme gave a signal at g equal 4.33, which is characteristic of ferric iron in a rhombic ligand field.  相似文献   

10.
The NAD-dependent glutamate dehydrogenase (GDH) from Dictyostelium discoideum was purified 1101-fold with a yield of 23.4%. The enzyme has an apparent Mr of 356 kDa, determined using Sephacryl S400, and a subunit molecular weight of 54 kDa on SDS-polyacrylamide gel electrophoresis. The Kms for alpha-ketoglutarate, NADH, and NH4+ are 0.36 +/- 0.03 mM, 16.0 +/- 0.1 microM, and 34.5 +/- 2.7 mM, respectively. The purified enzyme has a pH optimum of pH 7.25-7.5. At 0.1 mM, ADP and AMP stimulate GDH activity 25 and 102%, respectively. Half-maximal activity in the presence of 0.1 mM AMP for alpha-ketoglutarate, NADH, and NH4+ is reached at 2.3 +/- 0.1 mM, 71.4 +/- 5.5 microM, and 27.9 +/- 3.6 mM, respectively.  相似文献   

11.
Phosphoribosylpyrophosphate (PRPP) synthetase (EC 2.7.6.1) was purified to virtual homogeneity from Salmonella typhimurium cells by a modification of previously published procedures. The molecular weight of the subunit was determined to be 31,000 +/- 3,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and sedimentation equilibrium analysis of the enzyme dissolved in 6 M guanidine hydrochloride. The amino acid composition of the enzyme was determined. Proline was identified as the only NH2-terminal residue. PRPP synthetase is apparently composed of identical or nearly identical subunits. NATIVE PRPP synthetase exists in multiple states of aggregation under all conditions. However, two predominant states were demonstrated under certain conditions. A form with molecular weight of 320,000 +/- 20,000 was found at pH 7.5 in the presence of MgATP. At pH 8.2 to 8.6, with or without MgATP, the predominant form corresponded to a molecular weight of 150,000 to 200,000; sedimentation equilibrium and velocity analysis indicated 160,000 +/- 15,000 as the most reliable molecular weight. More highly aggregated forms were observed at 4 degrees and higher protein concentrations. Removal of inorganic phosphate from PRPP synthetase by dilution or dialysis resulted in disaggregation. The fundamental unit of PRPP synthetase appears to consist of five (or possibly six) subunits, which can associate to form a dimer (10 or 12 subunits) and more highly aggregated forms. A pentameric subunit structure is consistent with the multiple species resolved by electrophoresis of the native enzyme in discontinuous polyacrylamide gel systems. Visualization of PRPP synthetase by negative staining with uranyl acetate and electron microscopy revealed fields of very asymmetric molecules, the dimensions of which corresponded to the M = 160,000 form. Dimers and higher aggregates of this unit were also seen. An unusual model, in which the five subunits are asymmetrically arranged, accounts very well for the electron microscopic appearance of the enzyme. The tendency of the enzyme to aggregate is viewed as a consequence of the unsatisfied bonding regions of the fundamental asymmetric unit.  相似文献   

12.
A procedure is described for the purification of 6-phosphogluconate dehydrogenase (6-phospho-D-gluconate:NADP oxidoreductase (decarboxylating) EC 1.1.1.44) from cell extracts of Streptococcus gaecalis. A 180-fold purification was achieved with an over-all yield of about 12% and an average specific activity of 14. The enzyme was homogeneous as determined by polyacrylamide gel electrophoresis, immunoelectrophoresis, and sedimentation equilibrium, studies. Its weight average molecular weight, as measured by sedimentation equilibrium, was 108,000 +/- 3,600. Other methods employed for molecular weight determinations gave values that ranged between 106,000 and 115,000. An analysis of the enzyme by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed it to be a dimer composed of subunits having equal molecular weight. The amino acid composition of the streptococcal enzyme is reported. The apparent Km values for NADP and 6-phosphogluconate were calculated from kinetic data and found to be 0.015 mM and 0.024 mM, respectively. Kinetic studies also indicated that the binding of one substrate did not affect the apparent affinity of the enzyme for the other substrate.  相似文献   

13.
D A Nealon  R A Cook 《Biochemistry》1979,18(16):3616-3622
Neurospora crassa nicotinamide adenine dinucleotide specific isocitrate dehydrogenase (EC 1.1.1.41) has been purified to homogeneity by the criteria of disc gel electrophoresis and sedimentation equilibrium. Purification of the enzyme is facilitated by the presence of phenylmethanesulfonyl fluoride and by the use of a ribose-linked adenosine 5'-monophosphate affinity column. The enzyme appears to be composed of nonidentical subunits of molecular weights 42 800 and 38 300 as estimated by polyacrylamide gel electrophoresis in 0.1% sodium dodecyl sulfate. From the intensity of each band and the native molecular weight, it is concluded that the enzyme is composed of either six or eight subunits, three or four of each type, respectively. The availability of pure enzyme will allow clarification of the structure of the enzyme by ligand binding studies.  相似文献   

14.
Lipoate acetyltransferase [acetyl-CoA: dihydrolipoate S-acetyl-transferase, EC 2.3.1.12], the core enzyme of the pyruvate dehydrogenase complex, has been highly purified by gel chromatography on Sepharose 6B and sucrose density gradient centrifugation in the presence of potassium iodide. The native enzyme has a sedimentation coefficient (S020,W) of 26.7S and a diffusion coefficient (D020,W) of 1.25 x 10(-7) cm2.-sec-1. The weight-average molecular weight was estimated to be 1.8 million from the sedimentation equilibrium data. The content of right-handed alpha helix in the enzyme molecule was estimated to be about 25% by optical rotatory dispersion and about 22% from the circular dichroism spectra. The enzyme was found to contain about 23 moles of protein-bound lipoic acid per mole of enzyme; some other properties are also reported. Lipoate acetyltransferase dissociated to yield a single subunit with a molecular weight of 74,000 as estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and by gel filtration on Bio-Gel in 6 M guanidine-HCl. The molecular weight was also estimated to be 74,000 from sedimentation equilibrium data in 6 M guanidine-HCl] containing 0.1 M 2-mercaptoethanol. Evidence is presented that 1 molecule of lipoate acetyltransferase apparently consists of 24 very similar subunits, each of which contains NH2-terminal alanine. Each subunit contains 1 molecule of covalently bound lipoic acid.  相似文献   

15.
Saccharopine dehydrogenase (N6-(glutar-2-yl)-L-ly-sine:NAD oxidoreductase (L-lysine-forming)) from baker's yeast was purified to homogenicity. The overall purification was about 1,200-fold over the crude extract with a yield of about 24%. The purified enzyme had a sedimentation coefficient (S20,w) of 3.0 S. The molecular weight determinations by sedimentation equilibrium, Sephadex G-100 gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a value of about 39,000 and, therefore, saccharopine dehydrogenase is a single polypeptide chain enzyme. A Stokes radius of 27 A and a diffusion constant of 7.9 X 10(-7) cm2 s-1 were obtained from Sephadex gel filtration chromatography. The enzyme had a high isoelectric pH of 10.1. The NH2-terminal sequence was Ala-Ala----. The enzyme possessed 3 cysteine residues/molecule; no disulfide bond was present. Incubation of saccharopine dehydrogenase with p-chloromercuribenzoate or iodoacetate resulted in complete loss of enzyme activity. Whereas the coenzyme and substrates were ineffective in protecting from inactivation by p-chloromercuribenzoate, iodoacetate inhibition was protected by excess coenzyme.  相似文献   

16.
Pork liver has previously been reported to contain a soluble enzymatic pathway which converts L-fucose to 2-keto-3-deoxy-L-fuconate and D-arabinose to 2-keto-3-deoxy-D-arabonate. We now report the isolation from pork liver of a soluble NAD+-dependent dehydrogenase which acts on both 2-keto-3-deoxy-L-fuconate and 2-keto-3-deoxy-D-arabonate. This enzyme has been purified to homogeneity by a five-step procedure; the final step involved affinity chromatography on NAD+-agarose. A purification factor of about 3000-fold was achieved with a yield of over 20%. The enzyme was homogeneous on polyacrylamide gel electrophoresis at pH 9.1 and 7.0 and on the basis of sedimentation equilibrium analysis with the ultracentrifuge. The molecular weight of the native enzyme is about 100,000 while disc gel electrophoresis in the presence of sodium dodecyl sulfate and thiol showed the presence of a polypeptide of molecular weight 26,800; these results suggest that the enzyme is a tetramer. The enzyme has an isoelectric point of 5.4. The enzyme is unstable in the dilute state and in the absence of thiol but can be kept for 2 years at -70 degrees at a protein concentration of 4 mg per ml and in the presence of 1 mM dithiothreitol.  相似文献   

17.
A low molecular weight 1,4-beta-glucan glucanohydrolase (endoglucanase) (1,4-(1,3;1,4)-beta-D-glucan 4-glucanohydrolase, EC 3.2.1.4) has been isolated from culture filtrates of the fungus Trichoderma viride QM 9414 by a two-step procedure of gel filtration and ion-exchange chromatography. The isolated enzyme appeared homogeneous upon polyacrylamide gel electrophoresis at pH 2.9, isoelectric focusing in a polyacrylamide gel slab, sedimentation equilibrium analysis and chromatography of the reduced and alkylated enzyme on a column of Sepharose 6B in 6 M guanidine - HCl. A molecular weight was calculated at approx. 20 000 and the isoelectric point was determined at pH 7.52. The purified enzyme was not a carbohydrate-containing protein.  相似文献   

18.
T H Cromartie  C T Walsh 《Biochemistry》1975,14(12):2588-2596
L-alpha-Hydroxy acid oxidase (listed as EC 1.4.3.2, L-amino acid: O2 oxidoreductase) has been purified 100-fold from rat kidney to apparent homogeneity by gel electrophoresis. A subunit molecular weight of 47,500 was found by sodium dodecyl sulfate gel electrophoresis, but in contrast to previous reports, the enzyme has been found to have a molecular weight of ca. 200,000 by Sephadex gel filtration and by dodecyl sulfate gel electrophoresis of the enzyme cross-linked with dimethyl suberimidate. A somewhat higher value was found by sedimentation equilibrium, but a tetrameric structure for the active enzyme is definitely established. The enzyme was found to contain the FMN coenzyme at a concentration of one FMN/102,000 daltons or one flavine/two subunits, a highly unusual finding. This ratio was determined from spectroscopic analysis of the FMN in lyophilized samples of the enzyme and by titration of the coenzyme with the flavine specific enzyme inactivator 2-hydroxy-3-butynoate. The enzyme has the same specific activity as a crystalline sample of the enzyme reported to have twice as much flavine/milligram.  相似文献   

19.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) has been purified to apparent homogeneity from rat muscle. The preparation exhibits a single polypeptide band with a molecular weight of 60,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme has a sedimentation coefficient of 11.3 S. Analysis by sedimentation equilibrium techniques showed the nat-ive enzyme to have a molecular weight of 238,000, whereas the enzyme, when analyzed in 6 M guanidine hydrochloride and 10 mM 2-mercaptoethanol, had a molecular weight of only 59,500. The amino acid composition of the enzyme was determined and peptide mapping was performed on a tryptic digest of S-carboxymethylated enzyme. NH2-terminal analysis by both the dansylation and cyanate procedures failed to identify a free NH2 terminus. Treatment of the enzyme with carboxypeptidase A resulted in the release of approximately 0.5 mol each of valine and leucine per 60,000 g of enzyme. The data presented indicate that hte native enzyme has a tetrameric structure consisting of four polypeptide chains each having a molecular weight of 60,000. The COOH-terminal analysis can be interpreted either as an indication of subunit heterogeneity or as a result of incomplete digestion of a -X-Leu-Val sequence at the end of a single type of polypeptide chain. Tryptic peptide maps strongly support the latter interpretation and suggest that the subunits are essentially identical.  相似文献   

20.
l-Phenylalanine ammonia-lyase was crystallized for the first time from a cell-free extract of Rhodosporidium toruloides IFO 0559. Heat treatment at 50°C for 5 min was a smart step for enzyme purification. Column chromatographies with DEAE-cellulose and hydroxyapatite, and gel filtration on a Sephadex G-200 column were used in the subsequent purification. The enzyme was purified to a homogeneous state and crystallized as fine needles with ammonium sulfate. The crystalline enzyme was pure by both analytical ultracentrifugation and polyacrylamide gel electrophoresis. The enzyme had a 8.2 s sedimentation velocity. The molecular weight of the enzyme was 165,000 by the dual methods of sedimentation equilibrium and gel filtration. The enzyme was composed of two identical subunits with a molecular weight of 80,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号