首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluence response curves for red light-induced germination of thermodormant (TD) seeds of Lactuca sativa L. show two regions that differ in their light sensitivity. In the region of high sensitivity, the germination responses differ between seed batches and can be altered by dark storage or far red irradiation. Induction of germination in far red dormant (FRD) seeds requires far higher fluences. Action spectra for induction to 60% germination were determined for these various response types. Spectra for the regions of low sensitivity response are similar for TD and FRD seeds. In comparison, the action spectrum for the highly sensitive response in TD seeds is significantly shifted to longer wavelengths. Analogous differences exist in the action spectra for far red reversal of the red induced germination responses. Germination induction in the low sensitivity region shows repeated red-far red reversibility. Far red reversal of red induction in the high sensitivity region does not saturate even at the highest far red fluences available and requires increased red fluences for subsequent reinduction. A model quantitatively accounting for these observations is presented. It is pointed out that action spectra of processes involving photoreversible pigments with partly overlapping absorption spectra in general are not identical with the absorption spectra of the partners. They should depend upon the degree of phototransformation required to elicit a given physiological response. In the case of induction of lettuce seed germination the observed action spectra can be interpreted as reflecting different requirements for P fr of the various response types. Our results do not necessitate the assumption of spectroscopically different forms of phytochrome in these seeds.Abbreviations TD thermodormant - FRD far red dormant - P phytochrome - P r red absorbing form of P - P fr far red absorbing form of P  相似文献   

2.
Red light (R) and gibberellins (GA) each induce a water potential decrease in the axes of lettuce (Lactuca sativa L.) embryos resulting in germination of intact seeds (achenes) or an increase in growth of the axes of isolated embryos. The fruit coat and endosperm are a substantial barrier to the penetration of exogeneous GA. Isolated embryos take up 35 times as much [3H]GA1 as the embryos of intact seeds and respond to less than 1·10-10 M GA3 or GA4+7. We calculated that only 1·10-8 M of either GA3 or GA4+7 would result in 50% germination if the GA were able freely to penetrate the fruit coat. Exogenous GA3 or GA4+7, at concentrations insufficient to cause germination, result in an apparent synergistic promotion of germination when suboptimal R is applied. Yet suboptimal concentrations of exogenous GA3 or GA4+7 and suboptimal R result in only additive increases in the growth response in axes of isolated embryos. Dose-response curves demonstrate quantitative increases in the growth response of the isolated axes after R or GA treatments insufficient to induce germination in intact seeds, indicating that a threshold potential must be achieved by the embryonic axes before germination can occur.Abbreviations FR far=red light - GA gibberellin - PEG poly-ethylene glycol 4000 - Pfr far-red-absorbing phytochrome - R red light III.=Carpita et al. 1979b; IV.=Carpita et al. 1979c  相似文献   

3.
Using lettuce (Lactuca sativa L., cv. Grand Rapids) embryos in osmotica, we have demonstrated that when the growth rates of the embryonic axes of seeds treated with red (R) or far-red (FR) light are equalized, the axes of R-treated seeds develop a 3.4-bar decrease in water potential (paper No. III).As axial growth begins, reserve protein and phytin decrease rapidly, concomitant with increases in reducing sugars, -amino nitrogen, and inorganic and esterified soluble phosphates. However, no differences between the axes of R-and FR-treated seeds are found with respect to the changes in these compounds, indicating that these changes arise as a result of growth and are not under immediate phytochrome control. Little change in the total lipid content is found in either treatment. The axes of FR-treated seeds hydrolyze endogenous sucrose at a greater rate thant those of R-treated seeds. Axes of R-treated seeds accumulate K+ and Na+ to a greater extent than those of FR-treated seeds. When potassium salts are added to the incubation medium, R induces increased K+ uptake by the axis and greater medium acidification by the axis. Malate and other organic acids and acidic amino acids increase at equal rates in both treatments, indicating that inorganic anions may also be taken up to balance the ionic charges. The results are compatible with the assumption that changes in the osmotic and pressure potentials of the embryonic axes of R-treated seeds are the result of a phytochrome-stimulated proton pump which, in whole dormant seeds, would initiate water-potential changes allowing the embryos to overcome the mechanical restraint of the surrounding seed layers, resulting in germination.Abbreviations FR far-red light - PEG polyethylene glyeol 4000 - Pfr far-red-absorbing form of phytochrome - R red light III=Carpita et al. 1979  相似文献   

4.
The influence of several plant growth regulators on the growth of the embryonic axes from red- and far-red-(R- and FR-)treated lettuce (Lactuca sativa L., cv. Grand Rapids) seeds was examined; as shown previously, the water potential of the axes from R-treated seeds has been lowered by 3.5–5.6 bars compared to that in axes from FR-treated ones. Kinetin and abscisic acid (ABA), when included in the incubation medium, reduced the elongation of the axes whereas fusicoccin stimulated it; however, these effects were the same in axes of both R- and FR-treated seeds. In contrast, elongation of axes from FR-treated seeds was stimulated by gibberellic acid (GA3, but elongation of axes from R-treated ones was not affected by this hormone. This latter result indicates that gibberellins may be involved in the phytochrome-mediated growth responses in lettuce axes.When the root caps of the embryos were removed prior to light treatment, R was still able to induce a water-potential decrease in the embryonic axes, indicating that at least a portion of the active Pfr resides in the axis and not the root cap.Abbreviations ABA abscisic acid - FR far red light - GA3 gibberellic acid - PEG polyethylene glycol - Pfr far-red-absorbing form of phytochrome - R red light  相似文献   

5.
The castor-bean endosperm-the best-studied material of reserve lipid hydrolysis in seed germination-was previously shown to have an acid lipase and an alkaline lipase having reciprocal patterns of development during germination. We studied oil seeds from 7 species, namely castor bean (Ricinus communis L.), peanut (Arachis hypogaea L.), sunflower (Helianthus annus L.), cucumber (Cucumis sativus L.), cotton (Gossypisum hirsutum L.), corn (Zea mays. L.) and tomato (Lycopersicon esculentum Mill.). The storage tissues of all these oil seeds except castor bean contained only alkaline lipase activity which increased drastically during germination. The pattern of acid and alkaline lipases in castor bean does not seem to be common in other oil seeds. The alkaline lipase of peanut cotyledons was chosen for further study. On sucrose gradient centrifugation of cotyledon homogenate from 3-d-old seedlings, about 60% of the activity of the enzyme was found to be associated with the glyoxysomes, 15% with the mitochondria, and 25% with a membrane fraction at a density of 1.12 g cm-3. The glyoxysomal lipase was associated with the organelle membrane, and hydrolyzed only monoglyceride whereas the mitochondrial and membrane-fraction enzymes degraded mono-, di- and triglycerides equally well. Thus, although the lipase in the glyoxysomes had the highest activity, it had to cooperate with lipases in other cellular compartments for the complete hydrolysis of reserve triglycerides.  相似文献   

6.
The weakening of the mechanical restraint of the endosperm layer in tomato (Lycopersicon esculentum Mill.) seeds, a prerequisite for germination, has been studied with the use of seeds of the gibberellin (GA)-deficientgib-1 mutant. Incubation ofgib-1 endosperms, including part of the testa, in 10 M GA4+7, resulted within 12 h in the release of fructose, glucose, galactose and mannose into the incubation medium. Only small amounts of sugars diffused out of thegib-1 endosperms during incubation in water. Chemical hydrolysis of endosperm cell walls ofgib-1 seeds showed that they are mainly composed of mannose, and smaller quantities of glucose and galactose. Treatment with GA4+7 induced in the endosperms the production of endo--mannanase activity that was not detectable during incubation in water, and also increased the activities of mannohydrolase and -galactosidase as compared with the water controls. No cellulase activity was found. It is concluded that in tomato seeds the weakening of endosperms prior to radicle protrusion is mediated by a GA-induced enzymatic degradation of the mannan-rich cell walls.Abbreviation GA(s) gibberellin(s)  相似文献   

7.
The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo--mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.  相似文献   

8.
The levels of cell-wall xyloglucan (amyloid) in nasturtium (Tropaeolum majus L.) cotyledons were monitored during a 28-d period covering seed imbibition, germination and early seedling development. The activities of the following enzymes capable of hydrolysing the glycosidic linkages in the xyloglucan were assayed in cotyledon extracts over the same period: endo-(14)--glucanase (EC 3.2.1.4), -glucosidase (EC 3.2.1.21), -xylosidase and -galactosidase (EC 3.2.1.23). The endo--glucanase was assayed viscometrically using xyloglucan as substrate, and the three glycosidases using appropriate p-nitrophenylglycosides. Alpha xylosidase and -galactosidase, the enzymes which would be expected to hydrolyse the side-chains from the xyloglucan molecule, were also assyed using xyloglucan as substrate. Under our culture conditions, xyloglucan levels remained constant at 30 mg per cotyledon pair for 7 d, that is until 3 d after germination: thereafter, the amount of xyloglucan diminished to zero in a 12-d period. The most rapid period of depletion was between days 9 and 13. The mobilisation of all reserve substances from the cotyledons resulted in a weight-loss of 92 mg: xyloglucan, therefore, is an important storage substance, representing 33% by weight of the seed's substrate reserves. It is a cell-wall storage polysaccharide. Xyloglucan mobilisation was accompanied by a 17-fold increase in endo--glucanase activity, a 7-fold increase in -galactosidase and an 8-fold increase in -xylosidase activities, all determined using xyloglucan as substrate. All three activities began to increase at day 5, peaked at days 12–14 when the most rapid phase of xyloglucan breakdown was over, and had declined to zero by days 22–25. The levels of theses enzymes have been shown to be consistent with their being responsible for xyloglucan hydrolysis in vivo. Nitrophenyl--galactosidase activity increased up to day 3, remained constant and then increased again 2.5-fold from day 5, peaking at day 11. Nitrophenyl--glucosidase remained relatively constant up to day 16 and then decreased to zero by day 25. Nitrophenyl--xylosidase activity was not detected.  相似文献   

9.
The effect of matriconditioning, the physiological presowing seed technique, using Micro-Cel E on Allium cepa L. cv. Czerniakowska seed quality was studied. Several ratios of seeds, carrier, water and time of priming were tested. The most effective treatment for improving onion seed germination at most tested temperatures was priming to a ratio of 2 g seed:1 g Micro-Cel:3 g water for 5 days in light at 15 °C. Matriconditioning greatly improved the germination and emergence percentage, seedling fresh and dry weight and reduced electrolyte leakage compared to that of untreated seeds; this beneficial effect was especially evident at suboptimal temperatures. Matriconditioning improved the germinability of aged seeds, the effect being more pronounced in the more aged seeds. No significant differences in ethylene production by primed and non-primed seeds were observed in the absence of its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), but its presence during imbibition caused an increase in ethylene production; an enhanced activity of in vivo ACC oxidase in Allium cepa matriconditioned seeds in comparison to untreated seeds, indicates that the endogenous level of ACC is a limiting factor of ethylene production. Likewise, the activity of ACC oxidase isolated from matriconditioned seeds was higher than that from untreated seeds. Higher endo--mannanase and total dehydrogenase activities were observed in primed air-dried seeds in comparing to non-primed seeds.  相似文献   

10.
Dry lettuce (Lactuca sativa L.) seeds (achenes) contain -galactosidase (EC 3.2.122) at a level which is maintained in the imbibed dormant state in darkness. Both red light (R) and gibberellic acid promote an increase in enzyme activity several hours prior to the completion of germination. Germination and enzyme activity are not essentially linked, however, for the latter can increase while the former is inhibited. -Galactosidase activity increases within the cotyledons and the endosperm following R stimulation, but the axis is essential to perceive the stimulus and to promote and maintain the increase in enzyme activity. A diffusible factor (or factors) is produced by and-or released from irradiated axes, and it migrates to the cotyledons (and possibly endosperm) to promote the increase in -galactosidase activity. Gibberellic acid, particularly in the presence of benzyladenine, can replace the requirement for irradiated axes.Abbreviations GA3 gibberellic acid - R red light  相似文献   

11.
During germination, the transmembrane electric potential (PD) of cortical cells of the embryonal axis of radish seeds (Raphanus sativus L.) rises from-120 mV initially to a maximum of-150 mV after 5 h incubation, then falls again to stable values of around-120 mV. Treatments inhibiting germination block the transitory PD increase. Administration of uncoupling agents or low temperatures, during the process of germination, produces a marked fall of the PD transitory increase. Abscisic Acid has a parallel inhibitory effect on PD and germination, while fusicoccin produces a rise in both; administration of abscisic acid with fusicoccin inhibits germination, while the PD remains at the high levels given by fusicoccin. These results are discussed in relation to ion exchange at membrane level.Abbreviations ABA abscisic acid - FC fusicoccin - GA3 gibberellic acid - PD electric potential difference (between the vacuole and the external medium) - CH cycloheximide - DNP dinitrophenol - FCCP (p-trifluormethoxy)-carbonylcyanide-phenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

12.
Summary The localization of high-affinity uptake sites for 3H-aminobutyric acid (3H-GABA) was investigated in the rat duodenum during ontogenesis and also at the adult stage (from 15.5 days of fetal life up to 105 days post natum) by means of low- and high-resolution autoradiography. At all stages studied, specific endocrine cell types of the epithelium were labelled and an intense uptake was detected in the nervous tissue, especially in glial cells but also in scarce neurones. When the incubation medium was supplemented with -alanine (1 mM), a blocker of the glial uptake for GABA, the labelling persisted only in endocrine cells and in few neurones. The intensity and the frequency of the labelling decreased at later periods compared to the earlier developmental stages. The GABA content of the duodenum as measured by a new ion-exchange column chromatography-HPLC-coupled method was higher in the early postnatal period compared to later stages. These observations suggest that GABA, in addition to being a neurotransmitter, may play an important role during development of the duodenum.  相似文献   

13.
Rapid mobilisation of storage products, including xyloglucan, in cotyledons of germinating nasturtium (Tropaeolum majus L.) normally starts about 7–8 d after imbibition and growth of the seedling at 20–25° C. Levels of activity of endo-1,4--glucanase (EC 3.2.1.4) in cotyledons, as assayed viscometrically with xyloglucan as substrate, varied in parallel with the rate of breakdown of xyloglucan. When cotyledons were excised from the seedling axis and incubated on moist filter paper at any point before 7 d, the catabolic reactions which normally occurred in the intact seedling were suspended. If, however, cotyledons excised at 8 d were incubated in 10–6 M 2,4-dichlorophenoxyacetic acid, a rise in endo-1,4--glucanase (xyloglucanase) activity was observed and a sharp decrease in fresh and dry weight as well as xyloglucan levels ensued at rates comparable to those observed in cotyledons attached to the seedling. Neither gibberellin nor kinetin treatments promoted xyloglucan breakdown or enhanced xyloglucanase activity. Addition of auxin to excised cotyledons before 7 d did not evoke premature breakdown, indicating that the tissue became receptive to auxin only at this time. The triggering process took place in darkness and was unaffected by various light-dark cycles. It is concluded that the sudden degradation of xyloglucan which occurs in nasturtium seeds about a week after germination begins is the result of enhanced activity of a depolymerizing xyloglucanase, this activity being evoked by auxin originating in the emerging seedling axis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,3-D 2,3-dichlorophenoxyacetic acid - GA3 gibberellic acid - kDa kilodalton The authors are pleased to acknowledge the technical assistance of Alexander Marcus and valuable discussions with Dr. Vladimir Farkas. This study was supported by a scholarship to A.H. from the Deutsche Forschungsgemeinschaft (FRG) and a grant to G.M. from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

14.
Transitions in the growth limiting factor from light (I) to nitrogen (N) and vice versa caused changes in geosmin production, protein and carbohydrate content, and the synthesis of pigments such as chlorophyll a (Chl a), phycobiliproteins (PBPs), and -carotene of the cyanobacterium Oscillatoria brevis. Following IN transition the first 150h, the decrease in protein content was compensated for by an increase of carbohydrates, and thereby, a constant biomass level was maintained in this period. Thereafter, biimass dropped to 15% of its initial level. A decrease in geosmin and pigment content was observed during transition from IN-limited growth. However, geosmin increased relative to phytol (Chl a) and -carotene which may indicate that a lowered demand for phytol and -carotene during N-limited growth allows isoprenoid precursors to be directed to geosmin rather than to pigment synthesis. Synthesis of Chl a and -carotene at the expense of geosmin was suggested for the observed start of increase in geosmin production only at the time that Chl a and -carotene had reached their I-limited steady state. Transition from nitrogen to light limited growth caused an acceleration of metabolism shown by a rapid decrease in carbohydrate content accompanied by an increase in protein content. The growth rate of the organisms temporarily exceeded the dilution rate of the culture and the biomass level increased 6-fold. Due to the only modest changes in geosmin production (2-fold) compared to changes in biomass level (6-fold) during I-or N-limited growth, environmental factors seem to have limited effect on geosmin production.Abbreviations Chl a chlorophyll a - dry wt dry weight; - I-limited light-limited - N-limited nitrogen-limited - PBP phycobiliprotein This research was performed at the Department of Microbiology, University of Amsterdam, with finacial support provided by the Royal Norwegian Ministry of Foreign Affairs and the Royal Norwegian Council for Scientific and Industrial Research  相似文献   

15.
Using a capillary electrophoresis-based method, single enzyme molecule assays were performed on E. coli beta-galactosidase from three different sets of samples. The first set consisted of lysates of induced cells from five different strains of the bacteria, as well as two different commercial preparations of the enzyme. These samples were found to have substantially different distributions of single molecule activities. For the second set of samples, beta-galactosidase expression was induced for 1.5 hr, followed by further incubation where expression was repressed. Assays were performed on the lysates of the preinduction and on the lysates from aliquots taken set times postinduction. The recently induced enzyme had a 25% higher average single molecule activity than the basally expressed enzyme. This average activity returned to the basal value 3.5 hr postinduction and remained unchanged thereafter. Finally, beta-galactosidase was induced at 26 and 42 degrees C. The enzyme was assayed before and after partial thermal denaturation. The samples were found to be indistinguishable with respect to their average single molecule activities.  相似文献   

16.
We have purified an abundant, 33000-dalton polypeptide (P33) from cultured pith parenchyma tissue of Nicotiana tabacum L. cv. Havana 425. The accumulation of P33 in culture is inhibited by the cytokinin kinetin (N6-furfuryl-amino purine). When tissues are subcultured on auxin-containing medium, the P33 content measured by rocket immunoelectrophoresis increases by 10-fold from 9 to 90 g·mg-1 soluble protein over a 7-d period. This increase is blocked when kinetin is added to the culture medium. There is strong evidence that P33 is a -1,3-glucanase (EC 3.2.1.39): i) Purified P33 specificially promotes the endo-type hydrolysis of -1,3-glucans and has essentially the same moleculear weight, pH optimum, and sensitivitiy to heavy metals as the -1,3-glucanase isolated by others from tobacco. ii) Glucanase activity is inhibited by specific antibodies against P33. iii) P33 and glucanase activity co-purify and cannot be separated by affinity chromatography using the -1,3-glucanase substrate pachyman. iv) P33 content and glucanase activity are strongly correlated in tissues grown under inductive and non-inductive conditions. The pattern of glucanase synthesis estimated by [35S]methionine incorporation parallels changes in the amount of glucanase. This indicates that cytokinin acts, at least in part, by blocking synthesis of the enzyme.Abbreviations IgG immunoglobulin G - P33 33000-dalton polypeptide - SDS-PAGE sodium-dodecyl-sulfate polyacryl-amide-gel electrophoresis  相似文献   

17.
A prototypical characteristic of the Brassicaceae is the presence of the myrosinase-glucosinolate system. Myrosinase, the only known S-glycosidase in plants, degrades glucosinolates, thereby initiating the formation of isothiocyanates, nitriles and other reactive products with biological activities. We have used myrosinase gene promoters from Brassica napus and Arabidopsis thaliana fused to the beta -glucuronidase (GUS) reporter gene and introduced into Arabidopsis thaliana, Brassica napus and/or Nicotiana tabacum plants to compare and determine the cell types expressing the myrosinase genes and the GUS expression regulated by these promoters. The A. thaliana TGG1 promoter directs expression to guard cells and phloem myrosin cell idioblasts of transgenic A. thaliana plants. Expression from the same promoter construct in transgenic tobacco plants lacking the myrosinase enzyme system also directs expression to guard cells. The B. napus Myr1.Bn1 promoter directs a cell specific expression to idioblast myrosin cells of immature and mature seeds and myrosin cells of phloem of B. napus. In A. thaliana the B. napus promoter directs expression to guard cells similar to the expression pattern of TGG1. The Myr1.Bn1 signal peptide targets the gene product to the reticular myrosin grains of myrosin cells. Our results indicate that myrosinase gene promoters from Brassicaceae direct cell, organ and developmental specific expression in B. napus, A. thaliana and N. tabacum.  相似文献   

18.
19.
The oilseed rape (Brassica napus) endo-polygalacturonase (endo-PG) RDPG1 is involved in middle lamella breakdown during silique opening. We investigated tissue-specific expression of RDPG1 in transgenic Arabidopsis thaliana. Cellular localization of endo-PG protein in Arabidopsis siliques was determined by immuno-electron microscopy. An Arabidopsis orthologue, ADPG1, was isolated and aligned with the sequence of RDPG1. The proximal 5 sequences as well as introns are largely conserved. Analysis of the histological GUS-staining pattern of two RDPG1 promoter-GUS (-glucuronidase) constructs in transgenic Arabidopsis revealed that the conserved proximal part of the 5-flanking region directs expression in dehiscence zones of siliques and anthers, floral abscission zones and stylar tissues during pollen tube growth, branch points between stems and pedicel and expression associated with the apical meristem of seedlings, while the distal part of theRDPG1 5-flanking region contains elements involved in vascular-associated expression in petals, cotyledons and roots. Subsequent RT-PCR analysis, on RNA from the corresponding rape tissues, confirms the staining pattern revealed in transgenic Arabidopsis, thereby justifying the use of Arabidopsis as a reliable model system for analysis of oilseed rape regulatory sequences.  相似文献   

20.
Summary The human fetal sympathetic ganglia were studied using the indirect peroxidase-antiperoxidase PAP method for immunocytochemical demonstration of three catecholamine-synthesizing enzymes, tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) as well as the neuropeptides leucine (Leu5)-enkephalin and substance P. The neuroblasts of the ganglia showed intense peroxidase immunoreactivity for TH, moderate reaction to DBH, and no reaction to PNMT. The small intensely fluorescent (SIF) cells situated along the blood vessels also showed positive labelling for only two enzymes, TH and DBH. The immunocytochemical localization of these enzymes suggests that both neuroblasts and SIF cells synthesize noradrenalin. Neither the neuroblasts nor SIF cells showed a reaction to substance P, and only the SIF cells contained enkephalin-like immunoreactivity. The role of enkephalin in the noradrenalin-containing SIF cells is unknown, but may be related to neuromodulation of ganglionic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号