首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ileal apical and liver basolateral bile acid transporters catalyze the Na+-dependent uptake of these amphipathic molecules in the intestine and liver. They contain nine predicted helical hydrophobic sequences (H1-H9) between the exoplasmic N-glycosylated N terminus and the cytoplasmic C terminus. Previous in vitro translation and in vivo alanine insertion scanning studies gave evidence for either nine or seven transmembrane segments, with H3 and H8 noninserted in the latter model. N-terminal GFP constructs containing either successive predicted segments or only the last two domains of the liver transporter following a membrane anchor signal were expressed in HEK-293 cells, and a C-terminal glycosylation flag allowed detection of membrane insertion. Western blot analysis with anti-GFP antibody after alkali and PNGase treatment showed that H1, H2, H3 behaved as competent transmembrane (TM) sequences. Results from longer constructs were difficult to interpret. H9, however, but not H8 was membrane-inserted. To analyze the intact transporter, a C-terminal YFP fusion protein was expressed as a functionally active protein in the plasma membrane of HEK-293 cells as seen by confocal microscopy. After limited tryptic digestion to ensure the accessibility of only exoplasmic lysine or arginine residues, molecular weight (MW) analysis of the five cleavage products on SDS-PAGE predicted the presence of seven transmembrane segments, H1, H2, H3, H4, H5, H6, and H9, with H7 and H8 exoplasmic. This new method provided evidence for seven membrane segments giving a new model of the membrane domain of this protein and probably the homologous ileal transporter, with H7/H8 as the transport region.  相似文献   

2.
Mammalian sodium/bile acid cotransporters (SBATs) are glycoproteins with an exoplasmic N-terminus, an odd number of transmembrane regions, and a cytoplasmic C-terminus. Various algorithms predict eight or nine membrane-embedded regions derived from nine hydrophobic stretches of the protein (H1-H9). Three methods were used to define which of these were transmembrane or membrane-associated segments in the liver bile acid transporter. The first was in vitro translation/insertion scanning using either single hydrophobic sequences between the N-terminal domain of the alpha-subunit of the gastric H,K-ATPase and the C-terminal domain of the beta-subunit that contains five N-linked glycosylation exoplasmic flags or using constructs beginning with the N-terminus of the transporter of various lengths and again ending in the C-terminus of the H,K-ATPase beta-subunit. Seven of the predicted segments, but not the amphipathic H3 and H8 sequences, insert as both individual signal anchor and stop transfer sequences in the reporter constructs. These sequences, H3 and H8, are contained within two postulated long exoplasmic loops in the classical seven-transmembrane segment model. The H3 segment acts as a partial stop transfer signal when expressed downstream of the endogenous H2. In a similar manner, the other amphipathic segment, H8, inserts as a signal anchor sequence when translated in the context with the upstream transporter sequence in two different glycosylation constructs. Alanine insertion scanning identified regions of the transporter requiring precise alignment of sequence to form competent secondary structures. The transport activity of these mutants was evaluated either in native protein or in a yellow fluorescent protein (YFP) fusion protein construct. All alanine insertions in H3 and H8 abolished taurocholate uptake, suggesting that both these regions have structures with critical intramolecular interactions. Moreover, these insertions also prevented trafficking to the plasma membrane as assessed by confocal microscopy with a polyclonal antibody against either the C-terminus of the transporter or the YFP signal of the YFP-transporter fusion protein. Two glycosylation signals inserted in the first postulated loop region and four of five such signals in the second postulated loop region were not recognized by the oligosaccharide transferase, and the L256N mutation exhibited 10% glycosylation and was inactive. These findings support a topography with nine membrane-spanning or membrane-associated segments.  相似文献   

3.
Hallén S  Fryklund J  Sachs G 《Biochemistry》2000,39(22):6743-6750
Mammalian sodium/bile acid cotransporters (SBATs) constitute a subgroup of the sodium cotransporter superfamily and function in the enterohepatic circulation of bile acids. They are glycoproteins with an exoplasmic N-terminus, seven or nine transmembrane segments, and a cytoplasmic C-terminus. They exhibit no significant homology with other members of the sodium cotransporter family and there is limited structure/function information available for the SBATs. Membrane-impermeant methanethiosulfonates (MTS) inhibited bile acid transport by alkylation of cysteine 270 (apical SBAT)/266 (basolateral SBAT) that is fully conserved among the sodium/bile acid cotransporters. The accessibility of this residue to MTS reagent is regulated by the natural substrates, sodium and bile acid. In experiments with the apical SBAT, sodium alone increases the reactivity with the thiol reagents as compared to sodium-free medium. In contrast, bile acids protect the SBATs from inactivation, although only in the presence of sodium. The inhibition and protection data suggest that cysteine 270/266 lies in a sodium-sensitive region of the SBATs that is implicated in bile acid transport.  相似文献   

4.
5.
The signal sequence within polypeptide chains that designates whether a protein is to be anchored to the membrane by a glycosylphosphatidylinositol (GPI) anchor is characterized by a carboxyl-terminal hydrophobic domain preceded by a short hydrophilic spacer linked to the GPI anchor attachment (omega) site. The hydrophobic domain within the GPI anchor signal sequence is very similar to a transmembrane domain within a stop transfer sequence. To investigate whether the GPI anchor signal sequence is translocated across or integrated into the endoplasmic reticulum membrane we studied the translocation, GPI anchor addition, and glycosylation of different variants of a model GPI-anchored protein. Our results unequivocally demonstrated that the hydrophobic domain within a GPI signal cannot act as a transmembrane domain and is fully translocated even when followed by an authentic charged cytosolic tail sequence. However, a single amino acid change within the hydrophobic domain of the GPI-signal converts it into a transmembrane domain that is fully integrated into the endoplasmic reticulum membrane. These results demonstrated that the translocation machinery can recognize and differentiate subtle changes in hydrophobic sequence allowing either full translocation or membrane integration.  相似文献   

6.
Polarized sorting of membrane proteins in epithelial cells is mediated by cytoplasmic basolateral signals or by apical signals in the transmembrane or exoplasmic domains. Basolateral signals were generally found to be dominant over apical determinants. We have generated chimeric proteins with the cytoplasmic domain of either the asialoglycoprotein receptor H1 or the transferrin receptor, two basolateral proteins, fused to the transmembrane and exoplasmic segments of aminopeptidase N, an apical protein, and analyzed them in Madin-Darby canine kidney cells. Whereas both cytoplasmic sequences induced endocytosis of the chimeras, only that of the transferrin receptor mediated basolateral expression in steady state. The H1 fusion protein, although still largely sorted to the basolateral side in biosynthetic surface transport, was subsequently resorted to the apical cell surface. We tested whether the difference in sorting between trimeric wild-type H1 and the dimeric aminopeptidase chimera was caused by the number of sorting signals presented in the oligomers. Consistent with this hypothesis, the H1 signal was fully functional in a tetrameric fusion protein with the transmembrane and exoplasmic domains of influenza neuraminidase. The results suggest that basolateral signals per se need not be dominant over apical determinants for steady-state polarity and emphasize an important contribution of the valence of signals in polarized sorting.  相似文献   

7.
8.
The secretory Na(+)-K(+)-2Cl(-) cotransporter NKCC1 is a member of a small gene family of electroneutral salt transporters. Hydropathy analyses indicate that all of these transporters have a similar general structure consisting of large hydrophilic N and C termini on either side of a central, relatively well conserved, hydrophobic domain. Programs that predict the transmembrane topology of polytopic membrane proteins identify 10-12 putative membrane-spanning segments (MSSs) in this hydrophobic domain; but to date, there is little experimental data on the structure of this region for any of these transporters. In this report, we have studied the transmembrane topology of NKCC1 using an in vitro translation system designed to test the membrane insertion properties of putative MSSs (Bamberg, K., and Sachs, G. (1994) J. Biol. Chem. 269, 16909-16919). Fusion proteins consisting of putative NKCC1 MSSs inserted either (i) between an N-terminal cytosolic anchor sequence and a C-terminal reporter sequence containing multiple N-linked glycosidation sites or (ii) between an N-terminal signal anchor sequence and the same glycosidation flag were expressed in the presence of canine pancreatic microsomes. The glycosidation status of the reporter sequence, which indicated its luminal or extraluminal location in the microsomes, was then used to characterize the signal anchor or stop transfer activity of the inserted MSSs. The results of this experimental analysis yielded a topology scheme consisting of 12 membrane-spanning segments, two pairs of which apparently form rather tight hairpin-like structures within the membrane.  相似文献   

9.
Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.  相似文献   

10.
The membrane topology of the Arabidopsis thaliana Na(+)/H(+) exchanger isoform 1 (AtNHX1) was investigated by examining the topogenic function of transmembrane (TM) segments using a cell-free system. Even though the signal peptide found in the human Na(+)/H(+) exchanger (NHE) family is missing, the N-terminal hydrophobic segment was efficiently inserted into the membrane and had an N-terminus lumen topology depending on the next TM segment. The two N-terminal TM segments had the same topology as those of TM2 and TM3 of human NHE1. In contrast, TM2 and TM3 of human NHE1 did not acquire the correct topology when the signal peptide (denoted as TM1) was deleted. Furthermore, there were three hydrophobic segments with the same topogenic properties as the TM9-H10-TM10 segments of human NHE1, which has one lumenal loop (H10) and two flanking TM segments (TM9 and TM10). These data indicate that the plant NHX isoforms can form the common membrane topology proposed for the human NHE family, even though it does not have a signal peptide.  相似文献   

11.
The alpha-subunits of H,K-ATPase (HKAalpha) and Na,K-ATPase require a beta-subunit for maturation. We investigated the role of the beta-subunit in the membrane insertion and stability of the HKAalpha expressed in Xenopus oocytes. Individual membrane segments M1, M2, M3, M4, and M9 linked to a glycosylation reporter act as signal anchor (SA) motifs, and M10 acts as a partial stop transfer motif. In combined HKAalpha constructs, M2 acts as an efficient stop transfer sequence, and M3 acts as a SA sequence. However, M5 and M9 have only partial SA function, and M7 has no SA function. Consistent with the membrane insertion properties of segments in combined alpha constructs, M1-3 alpha-proteins are resistant to cellular degradation, and M1-5 up to M1-10 alpha-proteins are not resistant to cellular degradation. However, co-expression with beta-subunits increases the membrane insertion of M9 in a M1-9 alpha-protein and completely protects M1-10 alpha-proteins against cellular degradation. Our results indicate that HKAalpha N-terminal (M1-M4) membrane insertion and stabilization are mediated by intrinsic molecular characteristics; however, the C-terminal (M5-M10) membrane insertion and thus the stabilization of the entire alpha-subunit depend on intramolecular and intermolecular beta-subunit interactions that are similar but not identical to data obtained for the Na,K-ATPase alpha-subunit.  相似文献   

12.
Stettler H  Suri G  Spiess M 《Biochemistry》2005,44(14):5339-5345
Proprotein convertase PC3 (also known as PC1) is an endopeptidase involved in proteolytic processing of peptide hormone precursors in granules of the regulated secretory pathway of endocrine cells. Lacking any extended hydrophobic segments, PC3 was considered to be a secretory protein only peripherally attached to the granule membrane. Recently, evidence has been presented that PC3 is a transmembrane protein with a 115-residue cytoplasmic domain and a membrane-spanning segment containing eight charged amino acids [Arnaoutova, I., et al. (2003) Biochemistry 42, 10445-10455]. Here, we analyzed the membrane topology of PC3 and of a PC3 construct containing a conventional transmembrane segment of 19 leucines. Alkaline extraction was performed to assess membrane integration. Exposure to the cytosol or to the ER lumen was tested by addition of C-terminal tags for phosphorylation or glycosylation, respectively. Protease sensitivity was assayed in permeabilized cells. The results show that the C-terminus of PC3 is translocated across the endoplasmic reticulum membrane. Furthermore, the proposed transmembrane segment of PC3 and a similar one of carboxypeptidase E did not stop polypeptide translocation when inserted into a stop-transfer tester construct. PC3 is thus not a transmembrane protein. These results have implications for the mechanism of granule sorting of PC3 as well as for the topology of PC2 and carboxypeptidase E, which have been reported to span the lipid membrane by homologous charged sequences.  相似文献   

13.
Topogenic determinants that direct protein topology at the endoplasmic reticulum membrane usually function with high fidelity to establish a uniform topological orientation for any given polypeptide. Here we show, however, that through the coupling of sequential translocation events, native topogenic determinants are capable of generating two alternate transmembrane structures at the endoplasmic reticulum membrane. Using defined chimeric and epitope-tagged full-length proteins, we found that topogenic activities of two C-trans (type II) signal anchor sequences, encoded within the seventh and eighth transmembrane (TM) segments of human P-glycoprotein were directly coupled by an inefficient stop transfer (ST) sequence (TM7b) contained within the C-terminus half of TM7. Remarkably, these activities enabled TM7 to achieve both a single- and a double-spanning TM topology with nearly equal efficiency. In addition, ST and C-trans signal anchor activities encoded by TM8 were tightly linked to the weak ST activity, and hence topological fate, of TM7b. This interaction enabled TM8 to span the membrane in either a type I or a type II orientation. Pleiotropic structural features contributing to this unusual topogenic behavior included 1) a short, flexible peptide loop connecting TM7a and TM7b, 2) hydrophobic residues within TM7b, and 3) hydrophilic residues between TM7b and TM8.  相似文献   

14.
Human asialoglycoprotein receptor H1 is a single-spanning membrane protein with an amino-terminal domain of 40 residues exposed to the cytoplasm and the carboxyl-terminal domain translocated to the exoplasmic side of the membrane. It has been shown earlier that the transmembrane segment functions as an internal uncleaved signal sequence for insertion into the endoplasmic reticulum. In a deletion protein lacking almost the entire cytoplasmic domain, the signal sequence is cleaved at the carboxyl-terminal end of the transmembrane segment. All available criteria suggest that the protein is processed by signal peptidase. The cytoplasmic domain of the receptor does not directly inhibit signal cleavage since it does not detectably hinder cleavage of the normally amino-terminal signal sequence of influenza hemagglutinin in fusion proteins. We suggest that by its size or structure it affects the position of the receptor in the membrane and thus the accessibility of the potential cleavage site to signal peptidase.  相似文献   

15.
The human asialoglycoprotein receptor H1 is a single-spanning membrane protein with the amino terminus facing the cytoplasm and the carboxy terminus exposed on the exoplasmic side of the plasma membrane. It has been shown earlier that the transmembrane segment, residues 38-65, functions as an internal signal directing protein synthesis to the endoplasmic reticulum and initiating membrane insertion. This process is co-translational and mediated by signal recognition particle (SRP). To identify subsegments within this region containing the signal information, we prepared deletion mutants at the level of the cDNA and analysed them in a wheat germ in vitro translation system with microsomes as the target membrane. Insertion and membrane anchoring were judged by the glycosylation of the protein, its resistance to exogenous protease and the extent to which it can be extracted from the microsomes by alkaline treatment. It was found that very small deletions already reduce the stability of membrane anchoring. However, nearly half of the transmembrane domain can be deleted, both from the amino-terminal and from the carboxy-terminal side, without completely abolishing membrane insertion. Several mutants, although not inserted, still interact with SRP. The results support the notion that the main feature of a signal sequence is a hydrophobic stretch of sufficient length (10-12 residues in our sequence), and indicate that recognition by SRP is not sufficient for membrane insertion.  相似文献   

16.
Freeze-fracture reveals intramembrane fibrils lying along the intermembrane contacts that characterize tight junctions. Tight junctions from a variety of species are reexamined here by rapid freezing prior to freeze-fracture. The tight junction fibril is uprooted alternatively from either the cytoplasmic or the exoplasmic hemibilayer during freeze-cleavage, exposing two distinct but complementary views of its hybrid structure within the same replica. When the transmembrane fibril is uprooted from the exoplasmic hemibilayer it appears on the P-fracture face as a smooth-surfaced cylinder which is sometimes resolved into periodic globular structures. The lack of indication that the P-face cylinder has been pulled out through the opposite membrane half indicates that this domain of the fibril is, in large part, buried in the hydrophobic interior of the membrane. However, when the transmembrane fibril is uprooted from the cytosolic hemibilayer it appears on the E-fracture face as a row of irregular intramembrane particles. The irregular particles on the E-face aspect of the fibril are interpreted as corresponding to transmembrane protein segments that may very well make projections onto the cytosolic surface of the bilayer. En face views of the outermost junction strand between adjacent epithelial cells show periodic lines on the bilayer on each side of the junction which are interpreted as periodic transmembrane protein segments arising from the core structure of the tight junction fibril. If the backbone of the tight junction strand is an inverted cylindrical micelle, it must typically include proteins, which might anchor it to structures outside the membrane bilayer.  相似文献   

17.
Abstract

A method of in vitro translation scanning was applied to a variety of polytopic integral membrane proteins, a transition metal P type ATPase from Helicobacter pylori, the SERCA 2 ATPase, the gastric H+,K+ ATPase, the CCK-A receptor and the human ileal bile acid transporter. This method used vectors containing the N terminal region of the gastric H+,K+ ATPase or the N terminal region of the CCK-A receptor, coupled via a linker region to the last 177 amino acids of the β-subunit of the gastric H+,K+ ATPase. The latter contains 5 potential N-linked glycosylation sites. Translation of vectors containing the cDNA encoding one, two or more putative transmembrane domains in the absence or presence of microsomes allowed determination of signal anchor or stop transfer properties of the putative transmembrane domains by the molecular weight shift on SDS PAGE. The P type ATPase from Helicobacter pylori showed the presence of 8 transmembrane segments with this method. The SERCA 2 Ca2+ ATPase with this method had 9 transmembrane co-translational insertion domains and coupled with other evidence these data resulted in a 11 transmembrane segment model. Translation of segments of the gastric H+,K+ ATPase provided evidence for only 7 transmembrane segments but coupled with other data established a 10 membrane segment model. The G7 protein, the CCK-A receptor showed the presence of 6 of the 7 transmembrane segments postulated for this protein. Translation of segments of the human ileal bile acid transporter showed the presence of 8 membrane insertion domains. However, translation of the intact protein provided evidence for an odd number of transmembrane segments, resulting in a tentative model containing 7 or 9 transmembrane segments. Neither G7 type protein appeared to have an arrangement of sequential topogenic signals consistent with the final assembled protein. This method provides a useful addition to methods of determining membrane domains of integral membrane proteins but must in general be utilized with other methods to establish the number of transmembrane α-helices.  相似文献   

18.
M Zerial  D Huylebroeck  H Garoff 《Cell》1987,48(1):147-155
Each subunit of the human transferrin receptor (TR) dimer is inserted into the ER membrane as a transmembrane polypeptide having its N-terminus in the cytoplasm. The transmembrane segment of the molecule serves both as a signal for chain translocation and as a membrane anchor. To study which structural features of this segment are required for its dual function, we have essentially replaced the transmembrane peptide with the C-terminal membrane-spanning segment of two proteins having a separate N-terminal translocation signal and with an artificial uncharged peptide. In each case the mutant TR molecules are efficiently translocated in vitro. In contrast, substitution of the transmembrane peptide of TR with a hydrophilic peptide results in no detectable translocation activity of the mutant TR. This suggests that the hydrophobic character of the transmembrane peptide of TR, rather than its actual amino acid sequence, is important for chain translocation and membrane binding.  相似文献   

19.
Site-directed oligonucleotide mutagenesis has been used to introduce chain termination codons into the cloned DNA sequences encoding the carboxy-terminal transmembrane (27 amino acids) and cytoplasmic (10 amino acids) domains of influenza virus hemagglutinin (HA). Four mutant genes were constructed which express truncated forms of HA that lack the cytoplasmic domain and terminate at amino acids 9, 14, 17, or 27 of the wild-type hydrophobic domain. Analysis of the biosynthesis and intracellular transport of these mutants shows that the cytoplasmic tail is not needed for the efficient transport of HA to the cell surface; the stop-transfer sequences are located in the hydrophobic domain; 17 hydrophobic amino acids are sufficient to anchor HA stably in the membrane; and mutant proteins with truncated hydrophobic domains show drastic alterations in transport, membrane association, and stability.  相似文献   

20.
Select members of the Reoviridae are the only nonenveloped viruses known to induce syncytium formation. The fusogenic orthoreoviruses accomplish cell-cell fusion through a distinct class of membrane fusion-inducing proteins referred to as the fusion-associated small transmembrane (FAST) proteins. The p15 membrane fusion protein of baboon reovirus is unique among the FAST proteins in that it contains two hydrophobic regions (H1 and H2) recognized as potential transmembrane (TM) domains, suggesting a polytopic topology. However, detailed topological analysis of p15 indicated only the H1 domain is membrane spanning. In the absence of an N-terminal signal peptide, the H1 TM domain serves as a reverse signal-anchor to direct p15 membrane insertion and a bitopic N(exoplasmic)/C(cytoplasmic) topology. This topology results in the translocation of the smallest ectodomain ( approximately 20 residues) of any known viral fusion protein, with the majority of p15 positioned on the cytosolic side of the membrane. Mutagenic analysis indicated the unusual presence of an N-terminal myristic acid on the small p15 ectodomain is essential to the fusion process. Furthermore, the only other hydrophobic region (H2) present in p15, aside from the TM domain, is located within the endodomain. Consequently, the p15 ectodomain is devoid of a fusion peptide motif, a hallmark feature of membrane fusion proteins. The exceedingly small, myristoylated ectodomain and the unusual topological distribution of structural motifs in this nonenveloped virus membrane fusion protein necessitate alternate models of protein-mediated membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号