首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid phase amplification (SPA), a new method to amplify DNA, is characterized by the use of surface-bound primers. This limits the amplification to two-dimensional surfaces and therefore allows the easy parallelization of DNA amplification in a single system. SPA leads to the formation of small but dense DNA brushes, called DNA colonies. For a molecule to successfully duplicate itself, it needs to bend so that its free end can find a matching primer, located on the surface. We used Brownian dynamics simulations (with a united-atom model) to model the basic kinetics of an SPA experiment. The simulations mimic the temperature cycles and the molecule duplication process found in SPA. Our results indicate that the steric interaction between molecules leads to a decreased duplication probability for molecules in the center of a colony and to an outward leaning for the molecules on the perimeter. These effects result in slower amplification (compared to solution PCR) and indicate that steric interaction alone can explain the loss of the exponential growth (characteristic of solution PCR) of the number of molecules in an SPA experiment. Furthermore, the growth of the colony as a function of the number of thermal cycles is found to be similar to the one obtained with a simple Monte Carlo simulation.  相似文献   

2.
动物种群遗传多态性研究中的PCR技术   总被引:2,自引:0,他引:2  
基因组DNA的变异是种群遗传多态性研究的基础。PCR技术可以在反应管内经济快速地扩增特定DNA序列,在动物种群遗传多态性研究中的应用主要包括三个方面:(1)种群遗传多态位点的检测;(2)基因定位或利用已经定位的单拷贝基因设计染色体位点特异的分子标记;(3)与DNA测序技术相结合,高效经济地获取特定基因座位的全部遗传变异。  相似文献   

3.
Two cases of haplosporidian infection occurred during 1993 in Pacific oysters Crassostrea gigas from the French Atlantic coast. The localization and ultrastructure of the plasmodia are described. In situ hybridization of infected tissue sections was conducted with DNA probes for oyster-infecting haplosporidians. The Haplosporidium nelsoni-specific DNA probe MSX1347 hybridized with the C. gigas parasite, and the H. costale-specific probe SSO1318 did not hybridize. Total genomic DNA was extracted from the infected tissue sections for polymerase chain reaction (PCR) amplification of the haplosporidian. PCR amplifications with H. nelsoni-specific primers and with 'universal' actin primers did not yield the expected products of 573 and 700 bp, respectively. A series of primers was designed to amplify short regions of small subunit ribosomal DNA (SSU rDNA) from most haplosporidians. The primers encompass a highly variable region of the SSU rDNA and did not amplify oyster DNA. PCR amplification of the infected C. gigas genomic DNA with these primers yielded the expected-sized product from the primer pair targeting the shortest region (94 bp). This PCR product was sequenced and it was identical to the corresponding SSU rDNA region of H. nelsoni.  相似文献   

4.
Six primers for the amplification of three non-coding regions of chloroplast DNA via the polymerase chain reaction (PCR) have been designed. In order to find out whether these primers were universal, we used them in an attempt to amplify DNA from various plant species. The primers worked for most species tested including algae, bryophytes, pteridophytes, gymnosperms and angiosperms. The fact that they amplify chloroplast DNA non-coding regions over a wide taxonomic range means that these primers may be used to study the population biology (in supplying markers) and evolution (inter- and probably intraspecific phylogenies) of plants.  相似文献   

5.
The polymerase chain reaction (PCR) is the most widely used technique for the study of DNA. Applications for PCR have been extended significantly by the development of "long" PCR, a technique that makes it possible to amplify DNA fragments up to 40 kb in length. This article describes two novel applications of the long PCR technique, one which simplifies restriction mapping and another which enhances amplification specificity and yield. The same primers used to perform the long PCR amplification can be used as probes to perform restriction mapping of the DNA fragment amplified. Restriction digestion performed prior to long PCR amplification can be used to selectively suppress the amplification of members of families of closely related DNA sequences, thereby making it possible to selectively amplify one of a group of highly homologous sequences. These two complimentary techniques, both involving use of the long PCR paired with restriction digestion, have potential application in any laboratory in which PCR is performed.  相似文献   

6.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

7.
In this study we present an improved polymerase chain reaction (PCR)-based methodology to generate large amounts of high-quality complementary DNA (cDNA) from small amounts of initial total RNA. Global amplification of cDNA makes it possible to simultaneously clone many cDNAs and to construct directional cDNA libraries from a sequence-abundance-normalized cDNA population, and also permits rapid amplification of cDNA ends (RACE), from a limited amount of starting material. The priming of cDNAs with an adapter oligo-deoxythymidine (oligo-dT) primer and the ligation of a modified oligonucleotide to the 3′ end of single-stranded cDNAs, through the use of T4 RNA ligase, generates known sequences on either end of the cDNA population. This helps in the global amplification of cDNAs and in the sequence-abundance normalization of the cDNA population through the use of PCR. Utilization of a long-range PCR enzyme mix to amplify the cDNA population helps to reduce bias toward the preferential amplification of shorter molecules. Incorporation of restriction sites in the PCR primers allows the amplified cDNAs to be directionally cloned into appropriate cloning vectors to generate cDNA libraries. RACE-PCR done with biotinylated primers and streptavidin-coated para-magnetic particles are used for the efficient isolation of either full-length coding or noncoding strands.  相似文献   

8.
甜菜碱增强长片段PCR的扩增   总被引:5,自引:0,他引:5  
聚合酶链式反应(PCR)作为一项非常成熟的技术可以用于基因组序列的扩增。普通的PCR技术只适合于短片段DNA的扩增,一般在6kb以下。对于6kb至十几kb甚至几十kb以上的DNA片段的扩增就非常困难。通过添加不同化学物质,发现甜菜碱对长片段PCR的扩增有非常有效的增强作用。通过对玉米总DNA以及质粒DNA的扩增,发现1mol/L到2.5mol/L甜菜碱对改进PCR扩增效果明显。通过添加甜菜碱,可以从玉米基因组中扩增出9kb以上的单拷贝片段,从质粒中扩增出16kb以上片段。经过试验,发现不同GC含量的引物需要使用不同浓度的甜菜碱。甜菜碱可以减少甚至消除长片段PCR中的非特异性扩增。同时,我们发现其它的添加物,如DMSO,甘油,甲酰胺对长片段PCR的作用不明显。  相似文献   

9.
ABSTRACT: BACKGROUND: While being a standard powerful molecular biology technique, applications of the PCR to the amplification of high GC-rich DNA samples still present challenges which include limited yield and poor specificity of the reaction. Organic solvents, including DMSO and formamide, have been often employed as additives to increase the efficiency of amplification of high GC content (GC > 60%) DNA sequences. Bovine serum albumin (BSA) has been used as an additive in several applications, including restriction enzyme digestions as well as in PCR amplification of templates from environmental samples that contain potential inhibitors such as phenolic compounds. FINDINGS: Significant increase in PCR amplification yields of GC-rich DNA targets ranging in sizes from 0.4 kb to 7.1 kb were achieved by using BSA as a co-additive along with DMSO and formamide. Notably, enhancing effects of BSA occurs in the initial PCR cycles with BSA additions having no detrimental impact on PCR yield or specificity. When a PCR was set up such that the cycling parameters paused after every ten cycles to allow for supplementation of BSA, combining BSA and organic solvent produced significantly higher yields relative to conditions using the solvent alone. The co-enhancing effects of BSA in presence of organic solvents were also obtained in other PCR applications, including site-directed mutagenesis and overlap extension PCR. CONCLUSIONS: BSA significantly enhances PCR amplification yield when used in combination with organic solvents, DMSO or formamide. BSA enhancing effects were obtained in several PCR applications, with DNA templates of high GC content and spanning a broad size range. When added to the reaction buffer, promoting effects of BSA were seen in the first cycles of the PCR, regardless of the size of the DNA to amplify. The strategy outlined here provides a cost-effective alternative for increasing the efficiency of PCR amplification of GC-rich DNA targets over a broad size range.  相似文献   

10.
Microbial assessment of natural biodiversity is usually achieved through polymerase chain reaction (PCR) amplification. Deoxyribonucleic acid (DNA) sequences from natural samples are often difficult to amplify because of the presence of PCR inhibitors or to the low number of copies of specific sequences. In this study, we propose a non-specific preamplification procedure to overcome the presence of inhibitors and to increase the number of copies prior to carrying out standard amplification by PCR. The pre-PCR step is carried out through a multiple displacement amplification (MDA) technique using random hexamers as priming oligonucleotides and phi 29 DNA polymerase in an isothermal, whole-genome amplification reaction. Polymerase chain reaction amplification using specific priming oligonucleotides allows the selection of the sequences of interest after a preamplification reaction from complex environmental samples. The procedure (MDA-PCR) has been tested on a natural microbial community from a hypogean environment and laboratory assemblages of known bacterial species, in both cases targeting the small subunit ribosomal RNA gene sequences. Results from the natural community showed successful amplifications using the two steps protocol proposed in this study while standard, direct PCR amplification resulted in no amplification product. Amplifications from a laboratory assemblage by the two-step proposed protocol were successful at bacterial concentrations >or= 10-fold lower than standard PCR. Amplifications carried out in the presence of different concentrations of fulvic acids (a soil humic fraction) by the MDA-PCR protocol generated PCR products at concentrations of fulvic acids over 10-fold higher than standard PCR amplifications. The proposed procedure (MDA-PCR) opens the possibility of detecting sequences represented at very low copy numbers, to work with minute samples, as well as to reduce the negative effects on PCR amplifications of some inhibitory substances commonly found in environmental samples.  相似文献   

11.
The advent of long PCR (XL-PCR) has proven to be a major advance in PCR technology and is currently being utilised to investigate numerous biological systems. The analysis of mixed DNA populations is a particularly useful application for XL-PCR. For example, XL-PCR has been used to investigate the occurrence of heterogeneous mitochondrial DNA (mtDNA) rearrangement mutations. With XL-PCR it became possible to amplify the entire length of the mtDNA chromosome and detect any mtDNA deletion or insertion mutations based on a measurable change in overall sequence length. In the present communication, XL-PCR and conventional short-length PCR were used to amplify mitochondrial DNA sequences from several human vastus lateralis skeletal muscle samples. The experiments demonstrated that there was minimal preferential amplification of shorter DNA sequences with XL-PCR and was significantly less than the preferential amplification of shorter sequences observed with conventional PCR. Also, XL-PCR amplification of the complete mtDNA sequence from control DNA containing a single mtDNA template (leucocyte extracts) showed that the generation of PCR artefacts was not a predisposed failing of the system but was dependant on the standard rules that govern the set up and optimisation of any PCR reaction. In optimised systems, XL-PCR artefacts were not generated and a single PCR product was always recovered.  相似文献   

12.
13.
The polymorphic exon 2-exon 3 region of bovine major histocompatibility complex (MHC) class I genes was amplified by polymerase chain reaction (PCR) from genomic DNA samples with characterized class I polymorphism. The primers for amplification were designed in conserved regions at the borders of exons 2 and 3, based on all available cDNA sequences. The primers should, therefore, amplify most expressed class I genes, but may also amplify non-expressed class I genes. The PCR amplified class I gene fragments of 700 bp were characterized on the basis of restriction fragment length polymorphism (RFLP). The PCR-RFLP analysis of class I genes showed that the bands in each digestion could be classified as non-polymorphic, as shared between several bovine lymphocyte antigen (BoLA)-A types, or as specific to a single BoLA-A type. The same primers were then used for amplification of class I gene fragments from eight Sahiwal animals, a breed which originated in the Indian subcontinent. These studies showed that BoLA class I PCR-RFLP could be used to study class I polymorphism in family groups.  相似文献   

14.
Sequences from a tannin-tolerant Selenomonas ruminantium isolate (EAT2) that hydrolyzes gallic acid were identified. Two exhibited identity to helicases with a wide phylogenetic distribution. PCR amplification by using primers from one helicase gene detected 2000 to 5000 EAT2 genome equivalents but did not amplify total gastrointestinal microbial DNA of nine other ungulate species.  相似文献   

15.

Background  

Quantitative real-time PCR (qPCR) is becoming increasingly important for DNA genotyping and gene expression analysis. For continuous monitoring of the production of PCR amplicons DNA-intercalating dyes are widely used. Recently, we have introduced a new qPCR mix which showed improved amplification of medium-size genomic DNA fragments in the presence of DNA dye SYBR green I (SGI). In this study we tested whether the new PCR mix is also suitable for other DNA dyes used for qPCR and whether it can be applied for amplification of DNA fragments which are difficult to amplify.  相似文献   

16.
Sequences from a tannin-tolerant Selenomonas ruminantium isolate (EAT2) that hydrolyzes gallic acid were identified. Two exhibited identity to helicases with a wide phylogenetic distribution. PCR amplification by using primers from one helicase gene detected 2,000 to 5,000 EAT2 genome equivalents but did not amplify total gastrointestinal microbial DNA of nine other ungulate species.  相似文献   

17.
18.
Amplification of DNA bound on clay minerals   总被引:7,自引:0,他引:7  
DNA adsorbs and binds on clay minerals, which provides protection to the DNA against degradation by nucleases but does not eliminate the ability of bound DNA to transform cells. These observations support the concept that 'cryptic genes' can persist in the environment when bound on particles and that the genes could subsequently be expressed if an appropriate host was transformed. The polymerase chain reaction (PCR) was used to amplify free and bound DNA from Bacillus subtilis and calf thymus. DNA bound on montmorillonite, but not on kaolinite, was amplified. However, amplification occurred when kaolinite was pretreated with sodium metaphosphate. DNA was not released from the clays during the amplification procedure. The type of clay (e.g. its structure and charges) affected amplification. Because DNA bound on clay is protected against biodegradation, the ability to amplify DNA bound on clay by the PCR has palaeontological, archaeological, and anthropological implications for the detection of 'ancient' DNA, as well as for monitoring the persistence of recombinant DNA introduced to the environment in genetically modified organisms.  相似文献   

19.
Establishing effective DNA-based protocols for use on archival material fixed in formaldehyde (formalin) is a particularly challenging task. Formalin fixation induces cross-linking with nucleic acids and proteins, thereby reducing the amount and quality of the extracted DNA. Previous attempts have primarily focused on optimizing DNA extraction protocols. Here we focus on the use of enzymes capable of in vitro repair of DNA extracts prior to amplification of the nucleic acids by the polymerase chain reaction (PCR). The amplification success of mitochondrial DNA was greater using the repair enzyme assay (56%) than with the regular PCR assay (20%), and even more convincing results were obtained with the amplified nuclear ribosomal region (91% versus 21%). These results indicate that in vitro repair of DNA damage (depurinated sites, strand nicks and base modifications) increases the number of samples that amplify, amplify to a greater extent and amplify fewer ancillary bands and that DNA repair has been overlooked as a way of improving the efficiency of molecular methods used on formalin-fixed samples. Fidelity has not been specifically investigated, but preliminary results indicate that misincorporation is not a major problem.  相似文献   

20.
《Epigenetics》2013,8(2):94-100
Differential denaturation during PCR can be used to selectively amplify unmethylated DNA from a methylated DNA background. The use of differential denaturation in PCR is particularly suited to amplification of undermethylated sequences following treatment with bisulphite, since bisulphite selectively converts cytosines to uracil while methylated cytosines remain unreactive. Thus amplicons derived from unmethylated DNA retain less cytosines and their lower G + C content allows for their amplification at the lower melting temperatures, while limiting amplification of the corresponding methylated amplicons (Bisulphite Differential Denaturation PCR, BDD-PCR). Selective amplification of unmethylated DNA of four human genomic regions from three genes, GSTP1, BRCA1 and MAGE-A1, is demonstrated with selectivity observed at a ratio of down to one unmethylated molecule in 105 methylated molecules. BDD-PCR has the potential to be used to selectively amplify and detect aberrantly demethylated genes, such as oncogenes, in cancers. Additionally BDD-PCR can be effectively utilised in improving the specificity of methylation specific PCR (MSP) by limiting amplification of DNA that is not fully converted, thus preventing misinterpretation of the methylation versus non-conversion.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号