首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the efficiency of human immunodeficiency virus type 1 (HIV-1) integration in poly(ADP-ribose)polymerase-1 (PARP-1)-deficient murine cells and in human cell lines transfected with small interfering RNA against PARP-1 (PARP-1 siRNA). To semi-quantify the amount of integrated HIV-1 genome, real-time nested PCR was carried out using primers specific for Alu and alphoid DNA combined with primers for the HIV-1 genome. The results showed that the integration efficiency of the HIV-1 genome near Alu DNA, which is randomly distributed in the chromosome, is reduced in PARP-1-deficient murine cells, but not in PARP-1 siRNA-transfected human cells. By contrast, the integration efficiency of the HIV-1 genome near alphoid DNA, which is localized in the centromere region, is significantly reduced in PARP-1-deficient murine cells and in PARP-1 siRNA-transfected human cells. These results suggest that PARP-1 is required for HIV-1 integration near the centromere region both in human and murine cells.  相似文献   

2.
3.
4.
Huang L  Ho P  Yu J  Zhu L  Lee KH  Chen CH 《PloS one》2011,6(10):e26677
Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.  相似文献   

5.
6.
7.
8.
9.
10.
The persistence of latent HIV-infected cellular reservoirs represents the major hurdle to virus eradication in patients treated with highly active antiretroviral therapy, referred to as HAART. HIV-1 reservoirs are long-lived resting CD4+ memory cells containing the virus latently integrated. Since the HIV-1 reservoirs are not targeted by HAART, reactivation therapy has been suggested to purge viral latency. Bioassay-guided study of an ethyl acetate extract of Euphorbia laurifolia afforded two isomeric diterpenes that showed differential activity over HIV-1 reactivation. A previously reported compound was isolated too from Euphorbia lactea. This compound showed a potent HIV-1 reactivating effect. Bioassays results showed that HIV-1 reactivation activity is influenced by distinct structural characteristics.  相似文献   

11.
Human T-cell leukemia virus type 1 (HTLV-1) is suggested to cause adult T-cell leukemia after 40 to 50 years of latency in a small percentage of carriers. However, little is known about the pathophysiology of the latent period and the reservoir organs where polyclonal proliferation of cells harboring integrated provirus occurs. The availability of animal models would be useful to analyze the latent period of HTLV-1 infection. At 18 months after HTLV-1 infection of C3H/HeJ mice inoculated with the MT-2 cell line, which is an HTLV-1-producing human T-cell line, HTLV-1 provirus was detected in spleen DNA from eight of nine mice. No more than around 100 proviruses were found per 10(5) spleen cells. Cellular sequences flanking the 3' long terminal repeat (LTR) and the clonalities of the cells which harbor integrated HTLV-1 provirus were analyzed by linker-mediated PCR. The results showed that the flanking sequences are of mouse genome origin and that polyclonal proliferation of the spleen cells harboring integrated HTLV-1 provirus had occurred in three mice. A sequence flanking the 5' LTR was isolated from one of the mice and revealed the presence of a 6-nucleotide duplication of cellular sequences, consistent with typical retroviral integration. Moreover, PCR was performed on DNA from infected tissues, with LTR primers and primers derived from seven novel flanking sequences of the three mice. Data revealed that the expected PCR products were found from lymphatic tissues of the same mouse, suggesting that the lymphatic tissues were the reservoir organs for the infected and proliferating cell clones. The mouse model described here should be useful for analysis of the carrier state of HTLV-1 infection in humans.  相似文献   

12.
13.
14.
Kim S  Kim Y  Liang T  Sinsheimer JS  Chow SA 《Journal of virology》2006,80(22):11313-11321
Integration of retroviral DNA is nonspecific and can occur at many sites throughout chromosomes. However, the process is not uniformly distributed, and both hot and cold spots for integration exist. The mechanism that determines target site specificity is not well understood. Because of the nonspecific and widespread nature of integration, studies analyzing the mechanism and factors that control target site selection require the collection and analysis of a large library of human immunodeficiency virus type 1 (HIV-1) proviral clones. Such analyses are time-consuming and labor-intensive using conventional means. We have developed an efficient and high-throughput method of sequencing and mapping a large number of independent integration sites in the absence of any selection or bias. The new assay involves the use of a modified HIV-1 (NL-Mme) containing a type IIS restriction site, MmeI, at the right end of viral DNA. Digestion of genomic DNA from NL-Mme-infected cells generated viral DNA-containing fragments of a discrete size. Subsequent ligation-mediated PCR yielded short integration site fragments termed Int-tags, which were concatemerized for determining multiple integration sites in a single sequencing reaction. Analysis of chromosomal features and sequence preference associated with integration events confirmed the validity of the new high-throughput assay. The assay will aid the effort in understanding the mechanisms of target site selection during HIV-1 DNA integration, and the described methodology can be adapted easily to integration site studies involving other retroviruses and transposons.  相似文献   

15.
16.
A latent reservoir for human immunodeficiency virus type 1 (HIV-1) consisting of integrated provirus in resting memory CD4+ T cells prevents viral eradication in patients on highly active antiretroviral therapy (HAART). It is difficult to analyze the nature and dynamics of this reservoir in untreated patients and in patients failing therapy, because it is obscured by an excess of unintegrated viral DNA that constitutes the majority of viral species in resting CD4+ T cells from viremic patients. Therefore, we developed a novel culture assay that stimulates virus production from latent, integrated HIV-1 in resting CD4+ T cells in the presence of antiretroviral drugs that prevent the replication of unintegrated virus. Following activation, resting CD4+ T cells with integrated HIV-1 DNA produced virus particles for several days, with peak production at day 5. Using this assay, HIV-1 pol sequences from the resting CD4+ T cells of viremic patients were found to be genetically distinct from contemporaneous plasma virus. Despite the predominance of a relatively homogeneous population of drug-resistant viruses in the plasma of patients failing HAART, resting CD4+ T cells harbored a diverse array of wild-type and archival drug-resistant viruses that were less fit than plasma virus in the context of current therapy. These results provide the first direct evidence that resting CD4+ T cells serve as a stable reservoir for HIV-1 even in the setting of high levels of viremia. The ability to analyze archival species in viremic patients may have clinical utility in detecting drug-resistant variants not present in the plasma.  相似文献   

17.
At least 10 million individuals worldwide are co-infected with immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). These two viruses are transmitted most primarily by exposure to infected blood or blood products. Various nucleic acid assays have been developed for diagnostics and therapeutic monitoring of infections. In the present study, a multiplex real-time PCR assay for simultaneous detection of HCV and HIV-1 using molecular beacons were designed and validated. A well-conserved region in the HIV-1 pol gene and 5′NCR of HCV genome were used for primers and molecular beacon design. The analysis of scalar concentrations of the samples indicated that this multiplex procedure detects at least 1,000 copies/ml of HIV-1 and 100 copies/ml of HCV with linear reference curve (R 2 > 0.94). The results demonstrate that a specificity of 100 % and sensitivity of 96 % can be achieved. The analytical sensitivity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes only detected HIV-1 and all major variants of HCV. This assay may represent an alternative rapid and relatively inexpensive screening method for detection of HIV-1/HCV co-infection especially in blood screening.  相似文献   

18.
Current antiretroviral therapies have improved the duration and quality of life of people living with HIV-1. However, viral reservoirs impede complete eradication of the virus. Although there are many strategies to eliminate infectious virus, the most actively pursued are latency reversing agents in conjunction with immune modulation. This strategy, known as “shock and kill”, has been tested primarily against the most widely recognized HIV-1 latent reservoir found in resting memory CD4+ T cells. This is in part because of the dearth of conclusive evidence about the existence of non-T cell reservoirs. Studies of non-T cell reservoirs have been difficult to interpret because of technical and biological issues that have hampered a better understanding. This review considers the current knowledge of non-T cell reservoirs, the challenges encountered in a better understanding of these populations, and their implications for HIV-1 cure research.  相似文献   

19.
Although combination therapy allows the suppression of human immunodeficiency virus type 1 (HIV-1) viremia to undetectable levels, eradication has not been achieved because the virus persists in cellular reservoirs, particularly the latent reservoir in resting CD4(+) T lymphocytes. We previously established a simian immunodeficiency virus (SIV)/macaque model to study latency. We describe here a novel mechanism for the induction of SIV from latently infected resting CD4(+) T cells. Several human cell lines including CEMx174 and Epstein-Barr virus-transformed human B-lymphoblastoid cell lines mediated contact-dependent activation of resting macaque T cells and induction of latent SIV. Antibody-blocking assays showed that interactions between the costimulatory molecule CD2 and its ligand CD58 were involved, whereas soluble factors and interactions between T-cell receptors and major histocompatibility complex class II were not. Combinations of specific antibodies to CD2 also induced T-cell activation and virus induction in human resting CD4(+) T cells carrying latent HIV-1. This is the first demonstration that costimulatory signals can induce latent virus without the coengagement of the T-cell receptor, and this study might provide insights into potential pathways to target latent HIV-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号