首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insect epidermal cells display planar polarity (i.e. polarity in the plane of the cell sheet) by secreting oriented cuticular denticles and bristles before each moult. We investigate how cell polarities in an abdominal segment are uniformly oriented towards the posterior of the animal. Recently we have shown for the cotton bug Dysdercus that, in 180 degrees-rotated grafts pretreated with colchicine, graft cells tend to adopt the orientation prevailing in surrounding host cells via an intermediate stage with outward oriented denticles (Nübler-Jung and Grau, 1987). Here we show that, in untreated grafts that were transposed along the anteroposterior segment axis, the denticles also always tend to point outwards. This independence of the polarity pattern from the direction of transposition is compatible neither with a gradient model for polarity control, nor with the assumption that epidermal cells orient according to the local sequence of distinctly differentiated cells. Instead we found that outward orientation of graft denticles correlates with an elongation of epidermal cells along a host-graft border with divergent cell adhesiveness. We therefore propose that outward orientation in a graft results from a combination of two factors: epidermal cells stretch along an interface with divergent cell adhesiveness, and they form a denticle perpendicular to their long axis. By analogy, the normal anteroposterior orientation of denticles in a segment may result because epidermal cells tend to elongate parallel to the segment boundary and to form denticles perpendicular to this mediolateral cell elongation, i.e. along the anteroposterior segment axis.  相似文献   

2.
Summary The insect integument displays planar tissue polarity in the uniform orientation of polarized cuticular structures. In a body segment, for example, the denticles and bristles produced by the constituent epidermal cells point posteriorly. Colchicine can abolish this uniform orientation while still allowing individual cells to form orientated cuticular structures and thereby to express cell polarity. This suggests that an individual cell in a sheet can establish planar polarity without reference to some kind of covert supracellular cue (such as a morphogen gradient) in the epidermis as a whole. The results also indicate that colchicine interferes — directly or indirectly — with the mechanisms involved in aligning the polarity axes of individual cells into a common orientation, thereby generating supracellular or tissue polarity.  相似文献   

3.
Following opercular amputation in Pomatoceros lamarckii Quatrefages, wound healing is initiated from a predetermined point on the peduncle. The events of abscission, cell migration and cuticle deposition during wound healing have been studied by light and electron microscopy. Abscission occurs at a predetermined point on the peduncle indicated by specialized epidermal cells, the easy break-point cells (EBP). Following detachment of tissues distal to the EBP cells, the resultant wound is plugged by a knot of coelomocytes which provide a substratum over which epidermal cells migrate to seal and restore the epidermis. During their migration, the epidermal cells undergo differentiation and deposit a new cuticle. Cuticle formation is initiated by the deposition of a finely filamentous matrix. The fine filaments subsequently coalesce to form thicker fibrils which become aggregated into layers of orthogonally-arranged fibril bundles. The mechanisms involved in abscission, cell migration and cuticle deposition during wound healing of the opercular filament are discussed.  相似文献   

4.
Claude Jouin 《Tissue & cell》1978,10(2):289-301
The epidermal and stomodeal cuticles of Protodrilus are described then compared. The thin epidermal cuticle, the thickness of which is about the same over all the body, is characterized both by the absence of fibrils in its deepest part and by the extension of epidermal microvilli above the cuticle. The stomodeal cuticle, the thickness of which is as variable as that of the epithelium, presents two layers of fibrils comparable to the collagen fibrils described in the cuticle of other Annelida, as well as a relatively diversified supramicrovillous coating. The anterior cuticular thickening or grating plate, is characterized by the length of the epithelial microvilli, the thickness of the cuticular matrix and the superficial cuticular zone with supramicrovillous denticles supported by an axis of fibrous bundles. In the stomodeal cuticle, the fibrillar material seems to give to the cuticle a best resistance to deformation during the pharyngeal bulb contraction, while an especially elaborated supramicrovillous coating is found in regions most exposed to friction. These features contrast with the relative simplicity of the epidermal cuticle.  相似文献   

5.
Summary Abnormal denticle belt patterns can occasionally be observed in abdominal belts of partial larvae obtained from egg fragments. The abdominal belts have the following features in common: 1) The number of denticles of an abdominal denticle belt may increase, depending on the space occupied by a distinct segment or the whole body region. The arrangement of the denticles in such enlarged belts is less regular than in normal belts. 2) Enlarged denticle belts are also found in the terminal segment of a fragment, or in the segment next to it when the larval pattern is interrupted by fragmentation. The denticle belt in the adjacent segment(s) may then be supressed. 3) All denticles in a belt (or part of a belt) are orientated posteriorly if the distance to the posteriorly adjacent belt (or part of a belt) is larger than normal, or if this denticle belt is suppressed. Conditions anterior to a segment do not seem to exert any influence on denticle orientation.  相似文献   

6.
Patterning of the Drosophila ventral epidermis is a tractable model for understanding the role of signalling pathways in development. Interplay between Wingless and EGFR signalling determines the segmentally repeated pattern of alternating denticle belts and smooth cuticle: spitz group genes, which encode factors that stimulate EGFR signalling, induce the denticle fate, while Wingless signalling antagonizes the effect of EGFR signalling, allowing cells to adopt the smooth-cuticle fate. Medial fusion of denticle belts is also a hallmark of spitz group genes, yet its underlying cause is unknown. We have studied this phenotype and discovered a new function for EGFR signalling in epidermal patterning. Smooth-cuticle cells, which are receiving Wingless signalling, are nevertheless dependent on EGFR signalling for survival. Reducing EGFR signalling results in apoptosis of smooth-cuticle cells between stages 12 and 14, bringing adjacent denticle regions together to result in denticle belt fusions by stage 15. Multiple factors stimulate EGFR signalling to promote smooth-cuticle cell survival: in addition to the spitz group genes, Rhomboid-3/roughoid, but not Rhomboid-2 or -4, and the neuregulin-like ligand Vein also function in survival signalling. Pointed mutants display the lowest frequency of fusions, suggesting that EGFR signalling may inhibit apoptosis primarily at the post-translational level. All ventral epidermal cells therefore require some level of EGFR signalling; high levels specify the denticle fate, while lower levels maintain smooth-cuticle cell survival. This strategy might guard against developmental errors, and may be conserved in mammalian epidermal patterning.  相似文献   

7.
One function of the Wingless signaling pathway is to determine the naked, cuticle cell fate choice in the trunk epidermis of Drosophila larvae. The zinc finger protein Teashirt binds to the transactivator domain of Armadillo to modulate Wingless signaling output in the embryonic trunk and contributes to the naked cell fate choice. The Hedgehog pathway is also necessary for the correct specification of larval epidermal cell fate, which signals via the zinc finger protein, Cubitus interruptus. Here, we show that Cubitus interruptus also has a Wingless-independent function, which is required for the specification of the naked cell fate; previously, it had been assumed that Ci induces naked cuticle exclusively by regulation of wg. Wg and Hh signaling pathways may be acting combinatorially in the same, or individually in different, cells for this process, by regulating common sets of target genes. First, the loss of the naked cuticular phenotype in embryos lacking cubitus interruptus activity is very similar to that induced by a late loss of Wingless function. Second, overexpression of Cubitus interruptus causes the suppression of denticles (as Wingless does) in absence of Wingless activity in the anterior trunk. Using epistasis experiments, we conclude that different combinations of the three proteins Teashirt, Cubitus interruptus, and Armadillo are employed for the specification of naked cuticle at distinct positions both along the antero-posterior axis and within individual trunk segments. Finally, biochemical approaches suggest the existence of protein complexes consisting of Teashirt, Cubitus interruptus, and Armadillo.  相似文献   

8.
9.
Active endocytotic processes are required for the normal distribution of Wingless (Wg) protein across the epidermal cells of each embryonic segment. To assess the functional consequences of this broad Wg distribution, we have devised a means of perturbing endocytosis in spatially restricted domains within the embryo. We have constructed a transgene expressing a dominant negative form of shibire (shi), the fly dynamin homologue. When this transgene is expressed using the GAL4-UAS system, we find that Wg protein distribution within the domain of transgene expression is limited and that Wg-dependent epidermal patterning events surrounding the domain of expression are disrupted in a directional fashion. Our results indicate that Wg transport in an anterior direction generates the normal expanse of naked cuticle within the segment and that movement of Wg in a posterior direction specifies diverse denticle cell fates in the anterior portion of the adjacent segment. Furthermore, we have discovered that interfering with posterior movement of Wg rescues the excessive naked cuticle specification observed in naked (nkd) mutant embryos. We propose that the nkd segment polarity phenotype results from unregulated posterior transport of Wg protein and therefore that wild-type Nkd function may contribute to the control of Wg movement within the epidermal cells of the segment.  相似文献   

10.
Summary During the final larval instar the epidermis of the tobacco hornworm,Manduca sexta, synthesizes the larval cuticular proteins and the pigment insecticyanin. Then at the onset of metamorphosis the cells first become pupally-committed, then later produce the pupal cuticle. The changes in the pattern of epidermal protein synthesis during this period were followed by incubating the integument in vitro with either3H-leucine or35S-methionine, then analyzing the proteins by 2-dimensional gel electrophoresis. Precipitation by larval and pupal cuticular antisera and by insecticyanin antibody identified these proteins. Three distinct changes in epidermal protein synthesis were noted: 1) Stage-specific proteins, some of which are larval cuticular proteins, appear just before and during the change of commitment on day 3. (2) By late the following day (wandering stage), synthesis of these and many other proteins including all the identified larval cuticular proteins and insecticyanin was undetectable. Several noncuticular proteins were transiently synthesized by this pupally committed cell during wandering and sometimes the following day. (3) During the production of pupal cuticle a new set of pupal-specific cuticular proteins as well as some common cuticular proteins (precipitated by both antisera) were synthesized. Some of the latter were also synthesized during the period between pupal commitment and pupal cuticle deposition.In spite of an apparent absence of methionine in both larval and pupal cuticle, many cuticular proteins incorporated35S-methionine. Thus they may be synthesized as proproteins.Insecticyanin was shown to have two forms differing in isoelectric point, the cellular form being more acidic than the hemolymph form. Synthesis of the cellular form ceased before that of the hemolymph form.  相似文献   

11.
The outermost epidermal cell wall is specialized to withstand pathogens and natural stresses, and lipid-based cuticular polymers are the major barrier against incursions. The Arabidopsis thaliana mutant bodyguard (bdg), which exhibits defects characteristic of the loss of cuticle structure not attributable to a lack of typical cutin monomers, unexpectedly accumulates significantly more cell wall-bound lipids and epicuticular waxes than wild-type plants. Pleiotropic effects of the bdg mutation on growth, viability, and cell differentiation are also observed. BDG encodes a member of the alpha/beta-hydrolase fold protein superfamily and is expressed exclusively in epidermal cells. Using Strep-tag epitope-tagged BDG for mutant complementation and immunolocalization, we show that BDG is a polarly localized protein that accumulates in the outermost cell wall in the epidermis. With regard to the appearance and structure of the cuticle, the phenotype conferred by bdg is reminiscent of that of transgenic Arabidopsis plants that express an extracellular fungal cutinase, suggesting that bdg may be incapable of completing the polymerization of carboxylic esters in the cuticular layer of the cell wall or the cuticle proper. We propose that BDG codes for an extracellular synthase responsible for the formation of cuticle. The alternative hypothesis proposes that BDG controls the proliferation/differentiation status of the epidermis via an unknown mechanism.  相似文献   

12.
BACKGROUND AND AIMS: Roridula plants capture insects but have no digestive enzymes. It has been hypothesized that Roridula leaves absorb nitrogen from the faeces of obligately associated, carnivorous hemipterans. But rapid movement across the leaf surfaces of most plant leaves is prevented by the presence of an impermeable cuticle. However, in carnivorous plants, cuticular gaps or pores in digestive/absorptive cells allow rapid movement across the leaf surface. Recently, it was suggested that the hemipteran-plant interaction constituted a new pathway for plant carnivory. Here, a further adaptation to this pathway is described by demonstrating how Roridula plants probably absorb hemipteran faeces rapidly through their leaf cuticles. METHODS: The dye neutral red was used to document the rapidity of foliar absorption and TEM to determine the nature of cuticular discontinuities in the leaf of Roridula. KEY RESULTS: Aqueous compounds diffuse rapidly across the cuticle of Roridula's leaves but not across the cuticles of co-occurring, non-carnivorous plant leaves. Furthermore, immature Roridula leaves were unable to absorb neutral red whereas mature leaves could. Using TEM, cuticular gaps and pores similar to those in other carnivorous plants were found in the epidermal cells of mature Roridula leaves. CONCLUSIONS: The leaf cuticle of Roridula is very thin (0-120 nm) and cell wall elements project close to the leaf surface, possibly enhancing foliar absorption. In addition to these, cuticular gaps were frequently seen and probably perform a function similar to those found in other carnivorous plants: namely the absorption of aqueous compounds. The cuticular gaps of Roridula are probably an adaptation to plant carnivory, supporting the newly described pathway.  相似文献   

13.
Epidermal cell migration during wound healing in Dugesia lugubris   总被引:1,自引:0,他引:1  
The epidermal cells that migrate over the surface during the wound closure stage of head regeneration in Dugesia lugubris s.l. were examined by scanning electron microscopy. The effect of cytochalasin B on epidermal cell migration was also examined. During the first few hours after decapitation epidermal cells at the edges of the wound showed significant changes of shape related to the process of migration that was accomplished approximately 10 h after wounding. Flattening of the marginal cells was associated with active epidermal spreading throughout the healing period. Suitable support for migrating cells appeared to be a rhabditic network attached to the wound tissue. Epidermal cell migration was inhibited by cytochalasin B. These results demonstrate that the basis for cell movement in planarians is similar to that of many other systems.  相似文献   

14.
《Fly》2013,7(3):185-191
The development of denticle rows on the ventral Drosophila embryo is a valuable system for studying the genetic control of epithelial patterning. During late embryogenesis, the apical surfaces of denticle-producing cells acquire a distinctive rectangular morphology with long anteroposterior boundaries, along which the denticles form, and short ventrolateral boundaries that stain strongly for adherens junction proteins. We observe that ventrolateral denticle cell boundaries are also convoluted, suggesting that the strong adherens staining results, at least in part, from the additional membrane in these regions. Embryos mutant for the Planar Cell Polarity (PCP) Effector gene multiple wing hairs (mwh), or expressing dominant negative form of the small GTPase Rac1, have cells present between the normal denticle cell rows. These 'Interloper Cells' do not have convoluted ventrolateral boundaries with strong adherens protein staining, but have normal denticle placement, suggesting that adherens protein localization is not critical for denticle cell PCP. Based on these and other observations, we propose that denticle cell morphology arises from an epithelial stretch without junction remodeling. A crude mechanical model suggests that this mechanism can generate both the straight anteroposterior boundaries and the compacted ventrolateral boundaries typical of denticle cells. We discuss the significance of cell adhesion for denticle cell morphogenesis, especially given the established role for Rac1 in cell adhesion.  相似文献   

15.
Plant epidermal cells dedicate more than half of their lipid metabolism to the synthesis of cuticular lipids, which seal and protect the plant shoot. The cuticle is made up of a cutin polymer and waxes, diverse hydrophobic compounds including very-long-chain fatty acids and their derivatives. How such hydrophobic compounds are exported to the cuticle, especially through the hydrophilic plant cell wall, is not known. By performing a reverse genetic screen, we have identified LTPG, a glycosylphosphatidylinositol-anchored lipid transfer protein that is highly expressed in the epidermis during cuticle biosynthesis in Arabidopsis thaliana inflorescence stems. Mutant plant lines with decreased LTPG expression had reduced wax load on the stem surface, showing that LTPG is involved either directly or indirectly in cuticular lipid deposition. In vitro 2-p-toluidinonaphthalene-6-sulfonate assays showed that recombinant LTPG has the capacity to bind to this lipid probe. LTPG was primarily localized to the plasma membrane on all faces of stem epidermal cells in the growing regions of inflorescence stems where wax is actively secreted. These data suggest that LTPG may function as a component of the cuticular lipid export machinery.  相似文献   

16.
Vertebrate skin appendages are incredibly diverse. This diversity, which includes structures such as scales, feathers, and hair, likely evolved from a shared anatomical placode, suggesting broad conservation of the early development of these organs. Some of the earliest known skin appendages are dentine and enamel-rich tooth-like structures, collectively known as odontodes. These appendages evolved over 450 million years ago. Elasmobranchs (sharks, skates, and rays) have retained these ancient skin appendages in the form of both dermal denticles (scales) and oral teeth. Despite our knowledge of denticle function in adult sharks, our understanding of their development and morphogenesis is less advanced. Even though denticles in sharks appear structurally similar to oral teeth, there has been limited data directly comparing the molecular development of these distinct elements. Here, we chart the development of denticles in the embryonic small-spotted catshark (Scyliorhinus canicula) and characterize the expression of conserved genes known to mediate dental development. We find that shark denticle development shares a vast gene expression signature with developing teeth. However, denticles have restricted regenerative potential, as they lack a sox2+ stem cell niche associated with the maintenance of a dental lamina, an essential requirement for continuous tooth replacement. We compare developing denticles to other skin appendages, including both sensory skin appendages and avian feathers. This reveals that denticles are not only tooth-like in structure, but that they also share an ancient developmental gene set that is likely common to all epidermal appendages.  相似文献   

17.
Epithelial planar cell polarity (PCP) allows epithelial cells to coordinate their development to that of the tissue in which they reside. The mechanisms that impart PCP as well as effectors that execute the polarizing instructions are being sought in many tissues. We report that the epidermal epithelium of Drosophila embryos exhibits PCP. Cells of the prospective denticle field, but not the adjacent smooth field, align precisely. This requires Myosin II (zipper) function, and we find that Myosin II is enriched in a bipolar manner, across the parasegment, on both smooth and denticle field cells during denticle field alignment. This implies that actomyosin contractility, in combination with denticle-field-specific effectors, helps execute the cell rearrangements involved. In addition to this parasegment-wide polarity, prospective denticle field cells express an asymmetry, uniquely recognizing one cell edge over others as these cells uniquely position their actin-based protrusions (ABPs; which comprise each denticle) at their posterior edge. Cells of the prospective smooth field appear to be lacking proper effectors to elicit this unipolar response. Lastly, we identify fringe function as a necessary effector for high fidelity placement of ABPs and show that Myosin II (zipper) activity is necessary for ABP placement and shaping as well.  相似文献   

18.
Rhodaminyl phalloin labelling of larval epidermal cells in Calpodes ethlius (Stöll) (Lepidoptera : Hesperiidae) shows dorsal areas with apical bundles of F-actin. The bundles are present only during the first 36 hr of the 5th stadium. Most cells have only one or 2, rarely 3, 4 or 5. The bundles extend into the overlying cuticle as the cores of large helical microvilli that continue on as transverse cuticle components, resembling very large helical pore canals. The transverse structures are like those seen in extensible insect cuticles that may allow cuticular stretching during larval growth. Neither the bundles nor the transverse structures are easily resolvable by conventional stains for LM or EM. The results suggest that transverse fibrillar structures may be a more common component of soft cuticles than has been generally realized.  相似文献   

19.
The insect cuticle is non-cellular matrix secreted from a monolayer of epidermal cells. After abrasion of the larval cuticle of the silkworm, Bombyx mori, a protein with molecular mass of 135 kDa is newly detected in the cuticle. Mass spectrometric analysis of the tryptic fragments from this protein revealed that the 135-kDa protein is encoded by the Cb10 gene. In the predicted amino acid sequence of Cb10, three repeated motifs with [YxGGFGGppG(L/V)L] sequence are found in the C-terminal region. In addition to the repeated motifs, Cb10 has seventeen CxxxxC motifs randomly distributed throughout the polypeptide chain and serine rich region at the N-terminal region. The Cb10 gene is strongly expressed in epidermal cells after pupal ecdysis, and its expression in the larval epidermal cells is induced not only by cuticular abrasion, but also by bacterial infection. These expression patterns suggest some specific roles of this protein in pupal cuticle formation and defense reactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号