首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
A novel non-sulfur purple photosynthetic bacterium, designated Rhodospirillum centenum, was isolated from an enrichment culture designed to favor growth of anoxygenic photosynthetic N2-fixing bacteria. R. centenum grows optimally at 40–42° C and has the capacity to produce cytoplasmic R bodies, refractile structures not observed hitherto in photosynthetic prokaryotes. The bacterium is also unusual among photosynthetic bacteria in that it forms desiccation-resistant cysts when grown aerobically in darkness with butyrate as the sole carbon source.  相似文献   

2.
Specific enrichment culture methods were used to isolate new phototrophic heliobacteria (anoxygenic phototrophic bacteria containing bacteriochlorophyll g) from various natural samples. A survey of terrestrial and aquatic habitats yielded heliobacteria only from soils, in particular rice soils, and from certain hot springs. Thirteen nonthermophilic and 7 thermophilic (capable of growth above 50) strains of heliobacteria were isolated from such habitats and characterized as to their basic cellular and nutritional properties. Phylogenetic studies of four strains showed them to be related to known species of heliobacteria. It is concluded that, unlike phototrophic purple and green bacteria, heliobacteria are primarily (if not exclusively) terrestrial, except for hot spring species. This suggests that the ecology of heliobacteria is fundamentally different from that of other anoxyphototrophs.  相似文献   

3.
Despite the fact that heliobacteria are the only phototrophic representatives of the bacterial phylum Firmicutes, genomic analyses of these organisms have yet to be reported. Here we describe the complete sequence and analysis of the genome of Heliobacterium modesticaldum, a thermophilic species belonging to this unique group of phototrophs. The genome is a single 3.1-Mb circular chromosome containing 3,138 open reading frames. As suspected from physiological studies of heliobacteria that have failed to show photoautotrophic growth, genes encoding enzymes for known autotrophic pathways in other phototrophic organisms, including ribulose bisphosphate carboxylase (Calvin cycle), citrate lyase (reverse citric acid cycle), and malyl coenzyme A lyase (3-hydroxypropionate pathway), are not present in the H. modesticaldum genome. Thus, heliobacteria appear to be the only known anaerobic anoxygenic phototrophs that are not capable of autotrophy. Although for some cellular activities, such as nitrogen fixation, there is a full complement of genes in H. modesticaldum, other processes, including carbon metabolism and endosporulation, are more genetically streamlined than they are in most other low-G+C gram-positive bacteria. Moreover, several genes encoding photosynthetic functions in phototrophic purple bacteria are not present in the heliobacteria. In contrast to the nutritional flexibility of many anoxygenic phototrophs, the complete genome sequence of H. modesticaldum reveals an organism with a notable degree of metabolic specialization and genomic reduction.  相似文献   

4.
Although enrichment cultures for anoxygenic phototrophic heliobacteria commonly contain sporulating cells, once strains of heliobacteria are obtained in pure culture, they all but cease to sporulate. In fact, some species of heliobacteria have never been observed to sporulate. Thus, despite their phylogenetic connection to endospore-forming bacteria, the question of sporulation capacity in heliobacteria remains open. We have investigated this problem using PCR and Southern hybridization as tools and show here that all recognized species of heliobacteria tested, as well as several unclassified strains, contain homologs to the ssp genes of Clostridium and Bacillus species, genes that encode key sporulation-specific proteins. It can therefore be concluded that as a group, heliobacteria are likely all to be endospore-forming bacteria in agreement with their phylogenetic placement within the 'low GC' Gram-positive bacteria.  相似文献   

5.
Perspective can be defined as the relationships or relative importance of facts or matters from any special point of view. Thus, my Personal perspective reflects the threads I followed in a 50-year journey of research in the complex tapestry of bioenergetics and various aspects of microbial metabolism. An early interest in biochemical and microbial evolution led to the fertile hunting grounds of anoxygenic photosynthetic bacteria. Viewed as a physiological class, these organisms show remarkable metabolic versatility in that certain individual species are capable of using all the known major types of energy conversion (photosynthetic, respiratory, and fermentative) to support growth. Since such anoxyphototrophs are readily amenable to molecular genetic/biological manipulation, it can be expected that they will eventually provide important clues for unraveling the evolutionary relationships of the several kinds of energy conversion. I gradually came to believe that understanding the evolution of phototrophs would require detailed knowledge not only of how light is converted to chemical energy, but also of a) pathways of monomer production from extracellular sources of carbon and nitrogen and b) mechanisms cells use for integrating ATP regeneration with the energy-requiring biosyntheses of biological macromolecules. Serendipic observation of photoproduction of H2 from organic compounds by Rhodospirillum rubrum in 1949 led to discovery of N2 fixation by anoxyphototrophs, and this capacity was later exploited for the isolation of hitherto unknown species of photosynthetic prokaryotes, including the heliobacteria. Recent studies on the reaction centers of the heliobacteria suggest the possibility that these bacteria are descendents of early phototrophs that gave rise to oxygenic photosynthetic organisms.Abbreviations AMP adenosine monophosphate - ADP adenosine diphosphate - ATP adenosine triphosphate - ATPase adenosine triphosphatase - Bchl bacteriochlorophyll - DMSO dimethyl sulfoxide - NADH reduced nicotinamide adenine dinucleotide - nif genes for dinitrogen fixation - Nif bacterial mutants incapable of dinitrogen fixation - O/R oxidation/reduction - Pi inorganic orthophosphate - R. capsulatus Rhodobacter capsulatus - R. sphaeroides Rhodobacter sphaeroides - Rps. Rhodopseudomonas - TMAO trimethyl amine-N-oxide Written at the invitation of Govindjee.  相似文献   

6.
Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - Rb Rhodobacter - Rp Rhodopseudomonas  相似文献   

7.
The phylogenetic heterogeneity of anoxygenic phototrophic bacteria has been revealed by 16S rRNA sequence analysis, the results of which have led to extensive taxonomic rearrangements within previously defined taxa of phototrophs and stimulated interest in this group of organisms. Anoxygenic photosynthetic bacteria can be found within 4 of the 12 phylogenetic lineages, and in some cases are highly related to non-photosynthetic members of these groups. The largest number of phototrophs are found in the class Proteobacteria. Comparative phylogenetic analysis using 23S rDNA sequences generally supports the topology obtained from 16S rDNA sequences. The photosynthetic reaction centers are conserved in all photosynthetic bacteria, and are of two types. One is shared by the Proteobacteria and Chloroflexus aurantiacus and is similar to Photosystem II of cyanobacteria, while heliobacteria and Chlorobium and relatives possess a reaction center similar to the cyanobacterial Photosystem I. These similarities are supported by sequence analysis of core reaction center peptides, but contradict phylogenies reconstructed from rRNA sequence analysis. Genome analysis by means of physical mapping has been performed for only three species of anoxygenic phototrophs. Some conservation of operon structure and gene sequence has been found within the Proteobacteria, but does not extend to other phototrophs. Received: 29 December 1995 / Accepted: 19 July 1996  相似文献   

8.
The objective of this study was to employ microbial electrochemical cells (MXCs) to selectively enrich and examine anoxygenic photosynthetic bacteria for potential anaerobic respiration capabilities using electrodes. In the process, we designed a novel enrichment strategy that manipulated the poised anode potential, light, nitrogen availability, and media supply to promote growth of phototrophic bacteria while minimizing co‐enrichment of non‐phototrophic anode‐respiring bacteria (ARB). This approach resulted in light‐responsive electricity generation from fresh‐ and saltwater inocula. Under anoxic conditions, current showed a negative light response, suggesting that the enriched phototrophic consortia shifted between phototrophic and anaerobic respiratory metabolism. Molecular, physical, and electrochemical analyses elucidated that anode biofilms were dominated by green sulfur bacteria, and biofilms exhibited anode respiration kinetics indicative of non‐mediated electron transfer, but kinetic parameters differed from values previously reported for non‐phototrophic ARB. These results invite the utilization of MXCs as microbiological tools for exploring anaerobic respiratory capabilities among anoxygenic photosynthetic bacteria. Biotechnol. Bioeng. 2013; 110: 1020–1027. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.  相似文献   

10.
Heliobacteria are a recently discovered group of anoxygenic phototrophic bacteria, first described in 1983. Heliobacteria contain bacteriochlorophyll g, a pigment unique to species of this group, and synthesize the simplest photosynthetic complexes of all known phototrophs. Also, unlike all other phototrophs, heliobacteria lack a mechanism for autotrophy and produce endospores. Four genera of heliobacteria containing a total of 10 species are known. Species of the genera Heliobacterium, Heliobacillus, and Heliophilum grow best at neutral pH, whereas species of Heliorestis are alkaliphilic. Heliobacterium, Heliobacillus, and Heliophilum species form one phylogenetic clade of heliobacteria, while Heliorestis species form a second within the phylum Firmicutes of the domain Bacteria. Heliobacteria have a unique ecology, being primarily terrestrial rather than aquatic phototrophs, and may have evolved a mutualistic relationship with plants, in particular, rice plants. The genome sequence of the thermophile Heliobacterium modesticaldum supports the hypothesis that heliobacteria are “minimalist phototrophs” and that they may have played a key role in the evolution of phototrophic bacteria.  相似文献   

11.
Broad variation among anoxygenic reaction centers makes it essential to consider a wide variety when considering the origins of photosynthesis. The photosynthetic core antenna domain in the gene pshA from Heliophilum fasciatum was sequenced doubling the number of core sequences available from heliobacteria. The sequence shares a pattern of hydrophobicity and histidine residues with the core antenna domain of pshA from Heliobacillus mobilis. Sequence identity between the two pshA sequences was 68%, indicating heliobacterial reaction centers show similar diversity to photosystem I throughout cyanobacteria and plastids. Thus, the diversity of anoxygenic phototrophic reaction centers may be greater than previously thought.  相似文献   

12.
Abstract A procedure is described for the selective enrichment of anoxygenic photosynthetic bacteria from diverse natural sources containing numerous types of microorganisms. The enrichment medium contains a mixture of organic acid carbon sources, and the conditions used favor the growth of organisms that can multiply relatively rapidly anaerobically with N2 as the nitrogen source and light as the source of growth energy; the development of oxygenic cyanobacteria is effectively excluded.  相似文献   

13.
Purple non-sulfur phototrophic bacteria, exemplifed byRhodobacter capsulatus andRhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.  相似文献   

14.
Photosynthesis is an ancient process on Earth. Chemical evidence and recent fossil finds indicate that cyanobacteria existed 2.5-2.6 billion years (Ga) ago, and these were certainly preceded by a variety of forms of anoxygenic photosynthetic bacteria. Carbon isotope data suggest autotrophic carbon fixation was taking place at least a billion years earlier. However, the nature of the earliest photosynthetic organisms is not well understood. The major elements of the photosynthetic apparatus are the reaction centers, antenna complexes, electron transfer complexes and carbon fixation machinery. These parts almost certainly have not had the same evolutionary history in all organisms, so that the photosynthetic apparatus is best viewed as a mosaic made up of a number of substructures each with its own unique evolutionary history. There are two schools of thought concerning the origin of reaction centers and photosynthesis. One school pictures the evolution of reaction centers beginning in the prebiotic phase while the other school sees reaction centers evolving later from cytochrome b in bacteria. Two models have been put forth for the subsequent evolution of reaction centers in proteobacteria, green filamentous (non-sulfur) bacteria, cyanobacteria, heliobacteria and green sulfur bacteria. In the selective loss model the most recent common ancestor of all subsequent photosynthetic systems is postulated to have contained both RC1 and RC2. The evolution of reaction centers in proteobacteria and green filamentous bacteria resulted from the loss of RC1, while the evolution of reaction centers in heliobacteria and green sulfur bacteria resulted from the loss of RC2. Both RC1 and RC2 were retained in the cyanobacteria. In the fusion model the most recent common ancestor is postulated to have given rise to two lines, one containing RC1 and the other containing RC2. The RC1 line gave rise to the reaction centers of heliobacteria and green sulfur bacteria, and the RC2 line led to the reaction centers of proteobacteria and green filamentous bacteria. The two reaction centers of cyanobacteria were the result of a genetic fusion of an organism containing RC1 and an organism containing RC2. The evolutionary histories of the various classes of antenna/light-harvesting complexes appear to be completely independent. The transition from anoxygenic to oxygenic photosynthesis took place when the cyanobacteria learned how to use water as an electron donor for carbon dioxide reduction. Before that time hydrogen peroxide may have served as a transitional donor, and before that, ferrous iron may have been the original source of reducing power.  相似文献   

15.
The complete annotated genome sequence of Heliobacterium modesticaldum strain Ice1 provides our first glimpse into the genetic potential of the Heliobacteriaceae, a unique family of anoxygenic phototrophic bacteria. H. modesticaldum str. Ice1 is the first completely sequenced phototrophic representative of the Firmicutes, and heliobacteria are the only phototrophic members of this large bacterial phylum. The H. modesticaldum genome consists of a single 3.1-Mb circular chromosome with no plasmids. Of special interest are genomic features that lend insight to the physiology and ecology of heliobacteria, including the genetic inventory of the photosynthesis gene cluster. Genes involved in transport, photosynthesis, and central intermediary metabolism are described and catalogued. The obligately heterotrophic metabolism of heliobacteria is a key feature of the physiology and evolution of these phototrophs. The conspicuous absence of recognizable genes encoding the enzyme ATP-citrate lyase prevents autotrophic growth via the reverse citric acid cycle in heliobacteria, thus being a distinguishing differential characteristic between heliobacteria and green sulfur bacteria. The identities of electron carriers that enable energy conservation by cyclic light-driven electron transfer remain in question.  相似文献   

16.
Two new species of heliobacteria isolated from cyanobacterial mats of two alkaline sulfidic hot springs are formally described. Strains BR4 and BG29 are assigned to anoxygenic phototrophic bacteria of the familyHeliobacteriaceae, since they possess the unique properties of this taxon: strict anaerobiosis, formation of bacteriochlorophyllg, the lack of extensive intracytoplasmic membranes and chlorosomes, an unusual cell wall structure, and phylogenetic relatedness to the low G+C gram-positive eubacteria. Based on the 16S rDNA sequence similarity, strains BR4 and BG29 are assigned to the genusHeliobacterium and described as two new species of this genus:Heliobacterium sulfidophilum sp. nov. andHeliobacterium undosum sp. nov. The G+C content of the DNA is 51.3 mol % inHbt. sulfidophilum and 57.2-57.7 mol % inHbt. undosum. The cells ofHbt. sulfidophilum are rods, and the cells ofHbt. undosum are slightly twisted spirilla or short rods. Both new bacteria are motile by peritrichous flagella.Hbt. sulfidophilum produces endospores. The new bacteria are strict anaerobes growing photoheterotrophically on a limited range of organic compounds. In the dark, they can switch from photosynthesis to the slow fermentation of pyruvate. Biotin is required as a growth factor. Both species are highly tolerant to sulfide (up to 2 mM at pH 7.5) and oxidize it photoheterotrophically to elemental sulfur; photoautotrophic growth was not observed. The temperature optimal for growth ofHbt. sulfidophilum andHbt undosum is 30–35‡C, and the optimal pH is 7–8.  相似文献   

17.
Photosynthetic electron transfer has been examined in whole cells, isolated membranes and in partially purified reaction centers (RCs) of Roseicyclus mahoneyensis, strain ML6 and Porphyrobacter meromictius, strain ML31, two species of obligate aerobic anoxygenic phototrophic bacteria. Photochemical activity in strain ML31 was observed aerobically, but the photosynthetic apparatus was not functional under anaerobic conditions. In strain ML6 low levels of photochemistry were measured anaerobically, possibly due to incomplete reduction of the primary electron acceptor (QA) prior to light excitation, however, electron transfer occurred optimally under low oxygen conditions. Photoinduced electron transfer involves a soluble cytochrome c in both strains, and an additional reaction center (RC)-bound cytochrome c in ML6. The redox properties of the primary electron donor (P) and QA of ML31 are similar to those previously determined for other aerobic phototrophs, with midpoint redox potentials of +463 mV and −25 mV, respectively. Strain ML6 showed a very narrow range of ambient redox potentials appropriate for photosynthesis, with midpoint redox potentials of +415 mV for P and +94 mV for QA. Cytoplasm soluble and photosynthetic complex bound cytochromes were characterized in terms of apparent molecular mass. Fluorescence excitation spectra revealed that abundant carotenoids not intimately associated with the RC are not involved in photosynthetic energy conservation.  相似文献   

18.
The recently discovered heliobacteria are the only Gram-positive photosynthetic bacteria that have been cultured. One of the unique features of heliobacteria is that they have properties of both the photosynthetic green sulfur bacteria (containing the type I reaction center) and Clostridia (forming heat-resistant endospores). Most of the previous studies of heliobacteria, which are strict anaerobes and have the simplest known photosynthetic apparatus, have focused on energy and electron transfer processes. It has been assumed that like green sulfur bacteria, the major carbon flow in heliobacteria is through the (incomplete) reductive (reverse) tricarboxylic acid cycle, whereas the lack of CO2-enhanced growth has not been understood. Here, we report studies to fill the knowledge gap of heliobacterial carbon metabolism. We confirm that the CO2-anaplerotic pathway is active during phototrophic growth and that isoleucine is mainly synthesized from the citramalate pathway. Furthermore, to our surprise, our results suggest that the oxidative (forward) TCA cycle is operative and more active than the previously reported reductive (reverse) tricarboxylic acid cycle. Both isotopomer analysis and activity assays suggest that citrate is produced by a putative (Re)-citrate synthase and then enters the oxidative (forward) TCA cycle. Moreover, in contrast to (Si)-citrate synthase, (Re)-citrate synthase produces a different isomer of 2-fluorocitrate that is not expected to inhibit the activity of aconitase.  相似文献   

19.
Three species of anoxygenic phototrophic heliobacteria, Heliobacterium chlorum, Heliobacterium gestii, and Heliobacillus mobilis, were studied for comparative nitrogen-fixing abilities and regulation of nitrogenase. Significant nitrogenase activity (acetylene reduction) was detected in all species grown photoheterotrophically on N2, although cells of H. mobilis consistently had higher nitrogenase activity than did cells of either H. chlorum or H. gestii. Nitrogen-fixing cultures of all three species of heliobacteria were subject to switch-off of nitrogenase activity by ammonia; glutamine also served to switch-off nitrogenase activity but only in cells of H. mobilis and H. gestii. Placing photosynthetically grown heliobacterial cultures in darkness also served to switch-off nitrogenase activity. Dark-mediated switch-off was complete in lactate-grown heliobacteria but in pyruvate-grown cells substantial rates of nitrogenase activity continued in darkness. In all heliobacteria examined ammonia was assimilated primarily through the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway although significant levels of alanine dehydrogenase were present in extracts of cells of H. gestii, but not in the other species. The results suggest that heliobacteria, like phototrophic purple bacteria, are active N2-fixing bacteria and that despite their gram-positive phylogenetic roots, heliobacteria retain the capacity to control nitrogenase activity by a switch-off type of mechanism. Because of their ability to fix N2 both photosynthetically and in darkness, it is possible that heliobacteria are significant contributors of fixed nitrogen in their paddy soil habitat.  相似文献   

20.
Hydrogenases are important enzymes in the energy metabolism of microorganisms. Therefore, they are widespread in prokaryotes. We analyzed the occurrence of hydrogenases in cyanobacteria and deduced a FeFe-hydrogenase in three different heliobacterial strains. This allowed the first phylogenetic analysis of the hydrogenases of all five major groups of photosynthetic bacteria (heliobacteria, green nonsulfur bacteria, green sulfur bacteria, photosynthetic proteobacteria, and cyanobacteria). In the case of both hydrogenases found in cyanobacteria (uptake and bidirectional), the green nonsulfur bacterium Chloroflexus aurantiacus was found to be the closest ancestor. Apart from a close relation between the archaebacterial and the green sulfur bacterial sulfhydrogenase, we could not find any evidence for horizontal gene transfer. Therefore, it would be most parsimonious if a Chloroflexus-like bacterium was the ancestor of Chloroflexus aurantiacus and cyanobacteria. After having transmitted both hydrogenase genes vertically to the different cyanobacterial species, either no, one, or both enzymes were lost, thus producing the current distribution. Our data and the available data from the literature on the occurrence of cyanobacterial hydrogenases show that the cyanobacterial uptake hydrogenase is strictly linked to the occurrence of the nitrogenase. Nevertheless, we did identify a nitrogen-fixing Synechococcus strain without an uptake hydrogenase. Since we could not find genes of a FeFe-hydrogenase in any of the tested cyanobacteria, although strains performing anoxygenic photosynthesis were also included in the analysis, a cyanobacterial origin of the contemporary FeFe-hydrogenase of algal plastids seems unlikely. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Lauren Ancel Meyers]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号