首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of oligonucleotides condensed into long concatemeric complexes with cancer cells was investigated. Pairs of 24- and 25-mer oligodeoxyribonucleotides were designed so that they could hybridize and form concatemeric structures. Pre-assembling of the oligonucleotides into concatemers considerably enhanced their ability to bind to human embryo kidney 293 cells and neuroblastoma IMR-32 cells as compared to free oligonucleotides. Efficiency of concatemers binding to the cells is improved with increase of the length and concentration of concatemeric complexes. The obtained results suggest incorporation of pharmacologically active oligonucleotides into concatemeric complexes as an approach to improvement of their cellular interaction.  相似文献   

2.
Interaction of oligonucleotides condensed into long concatemeric complexes with cancer cells was investigated. Pairs of 24- and 25-mer oligodeoxyribonucleotides were designed so that they could hybridize and form concatemeric structures. Pre-assembling of the oligonucleotides into concatemers considerably enhanced their ability to bind to human embryo kidney 293 cells and neuroblastoma IMR-32 cells as compared to free oligonucleotides. Efficiency of concatemers binding to the cells is improved with increase of the length and concentration of concatemeric complexes. The obtained results suggest incorporation of pharmacologically active oligonucleotides into concatemeric complexes as an approach to improvement of their cellular interaction.  相似文献   

3.
Antisense oligonucleotides with sequences complementary to a given genetic target can enter cells in sufficient quantities to selectively inhibit gene expression. Thus, they have a potential therapeutic use in preventing undesirable gene expression in diseases such as cancer and AIDS. However, it is remarkable that these molecules, which have high molecular weights and are often charged, gain entry to cells at all. In this article, we review the possible mechanisms by which oligonucleotides enter cells and their subsequent intracellular fates. We also discuss current approaches for improving cellular uptake and delivery of antisense nucleic acids to their intended targets.  相似文献   

4.
The effect of modification of terminal groups of deoxyribooligonucleotides on their stability in cell culture and inside mammalian cells, namely Krebs 2, ascite carcinoma (KAC) and mouse fibroblasts L929, has been investigated. Oligonucleotides and their derivatives were found to be stable in culture medium without serum during 24 h. In the medium with KAC cells or ascitic fluid, orthophosphate was rapidly eliminated from the 5'-terminus of the oligonucleotides. In KAC cells, the scission of 5'-phosphomonoester bonds was accompanied by reutilization of the phosphate and by degradation of oligonucleotides to mononucleotides. In the medium with fibroblasts L929, the oligonucleotides were degraded from the 3'-end to tetranucleotides. Modification of oligonucleotides at the 5'-terminus by amidation made the 5'-phosphate groups resistant to KAC. Modification of the oligonucleotides by coupling of cholesterol or phenazinium to the 3'-terminus sufficiently increases their stability in the medium with fibroblasts L929, in that with Krebs 2 ascite carcinoma cells and inside the cells.  相似文献   

5.
6.
Jing N  Xiong W  Guan Y  Pallansch L  Wang S 《Biochemistry》2002,41(17):5397-5403
Several groups have demonstrated that G-rich oligonucleotides forming G-quartet structures display activity as potential drugs, such as potent HIV inhibitors. The delivery of G-quartet oligonucleotides to their intracellular targets is a key obstacle to overcome for their clinical success. Here we have developed a novel system to deliver G-rich oligonucleotides into the cell nucleus, e.g., the site of HIV integration. On the basis of the property of potassium-induced formation of G-quartet structure, we explored the difference of K(+) concentrations inside (140 mM) and outside (4 mM) cells to induce the G-rich oligonucleotides to form different structures inside and outside cells. The key steps of this delivery system include the following: (i) First, the G-quartet structure is denatured to form a lipid-DNA complex, so that the molecules can be well delivered into cells. (ii) Then the delivered molecules are induced to form G-quartet structures by potassium inside cells since the G-quartet structure is the primary requirement for inhibition of HIV-1 HIV integrase (IN) activity. The molecules of a novel G-quartet HIV inhibitor, T40214, with the sequence of (GGGC)(4) were successfully delivered into the nuclei of target cells, which significantly decreased HIV-1 replication and increased the probability to target HIV-1 IN in infected cells.  相似文献   

7.
Brain tissue has become a challenging therapeutic target, in part because of failure of conventional treatments of brain tumors and a gradually increasing number of neurodegenerative diseases. Because antisense oligonucleotides are readily internalized by neuronal cells in culture, these compounds could possibly serve as novel therapeutic agents to meet such a challenge. In previous in vitro work using cell culture systems, we have demonstrated that intracellular delivery requires a vector such as cationic liposomes since free oligonucleotides remain largely trapped in the endocytic pathway following cellular uptake. Here we studied the cellular uptake properties of oligonucleotides by explants of rat brain (brain slices), and by in vivo brain tissue after administration of oligonucleotides by bolus injection. In contrast to in vitro uptake, we show that in brain slices oligonucleotides were taken up by neuronal and nonneuronal cells, irrespective of their assembly with cationic liposomes. In either case, a diffuse distribution of oligonucleotides was seen in the cytosol and/or nucleus. Uptake of oligonucleotides by brain slices as a result of membrane damage, potentially arising from the isolation procedure, could be excluded. Interestingly, internalization was inhibited following treatment of the tissue with antibody GN-2640, directed against a nucleic acid channel, present in rat kidney cells. Our data support the view that an analogous channel is present in brain tissue, allowing entry of free oligonucleotides but not plasmids. Indeed, for delivery of the latter and accomplishment of effective transfection, cationic lipids were needed for gene translocation into both brain slices and brain tissue in vivo. These data imply that for antisense therapy to become effective in brain, cationic lipid-mediated delivery will only be needed for specific cell targeting but not necessarily for delivery per se to accomplish nuclear deposition of oligonucleotides into brain cells and subsequent down-regulation of disease-related targets.  相似文献   

8.
A novel, positive read-out assay that quantifies only sequence-specific nuclear activity of antisense oligonucleotides was used to evaluate morpholino and 2'-O-methyl sugar-phosphate oligonucleotides. The assay is based on modification of the splicing pathway of human beta-globin pre-mRNA. In addition, scrape-loading of cells with oligonucleotides allows the separate assessment of intracellular antisense activity of the oligonucleotides and their ability to penetrate the cell membrane barrier. The results show that, with scrape-loading, the morpholino oligonucleotides were approximately 3-fold more effective in their intrinsic antisense activity than alternating phosphodiester/phosphorothioate 2'-O-methyl-oligoribonucleotides and 6-9- and almost 200-fold more effective than the exclusively phosphorothioate and phosphodiester derivatives, respectively. The morpholino oligonucleotides were over 20-fold more effective than the phosphorothioate 2'-O-methyl-oligoribonucleotides in free uptake from the culture media. The antisense activity of the morpholino oligonucleotides was detectable not only in monolayer HeLa cells but also in suspension K562 cells. Time course experiments suggest that both the free uptake and efflux of morpholino oligonucleotides are slow.  相似文献   

9.
Abstract

Antisense oligonucleotides bind to specific mRNA or pre-mRNA sequences through Watson-Crick base pairing, resulting in decreased expression of the targeted protein. The use of cationic lipids to enhance cellular uptake of antisense oligonucleotides is reviewed herein. Cationic lipids such as N[1-(2,3-dioleyloxy)propyl]-N, N, N-trimethylammonium chloride (DOTMA) were found to enhance the biological activity of phosphorothioate oligonucleotides by at least 1000-fold in cell culture. Cationic lipid preparations enhanced both the rate and amount of oligonucleotide which associated with cells. In addition, DOTMA markedly changed the subcellular distribution of the oligonucleotide. In the absence of lipid, fluorescein labelled phosphorothioate oligonucleotides accumulated in discrete cytoplasmic structures. In the presence of cationic lipids, the oligonucleotides concentrated within the nucleus, were excluded from nucleoli, and localized in punctate cytoplasmic structures. The accumulation of the oligonucleotide in the nucleus was inhibited by incubation of the cells at 4°C and by monensin, but not by chloroquine, ammonium chloride, or nocodazole. Cell lines, both primary and transformed, differ markedly in their sensitivity to inhibition of gene expression with antisense oligonucleotides in the presence of cationic lipids. The differential sensitivity of the cells correlates with the amount of 35S-labelled oligonucleotide associated with the cells and the number of cells in the population which take up the oligonucleotide. Our studies have demonstrated that several types of cationic lipids markedly enhance the activity of phosphorothioate oligonucleotides in cell culture models. We are currently investigating the ability of cationic lipids to enhance activity of antisense oligonucleotides in more complex systems such as organ cultures and in animals.  相似文献   

10.
To reduce the adverse effects of cancer therapies and increase their efficacy, new delivery agents that specifically target cancer cells are needed. We and others have shown that aptamers can selectively deliver therapeutic oligonucleotides to the endosome and cytoplasm of cancer cells that express a particular cell surface receptor. Identifying a single aptamer that can internalize into many different cancer cell-types would increase the utility of aptamer-mediated delivery of therapeutic agents. We investigated the ability of the nucleolin aptamer (AS1411) to internalize into multiple cancer cell types and observed that it internalizes into a wide variety of cancer cells and migrates to the nucleus. To determine if the aptamer could be utilized to deliver therapeutic oligonucleotides to modulate events in the nucleus, we evaluated the ability of the aptamer to deliver splice-switching oligonucleotides. We observed that aptamer-splice-switching oligonucleotide chimeras can alter splicing in the nuclei of treated cells and are effective at lower doses than the splice switching oligonucleotides alone. Our results suggest that aptamers can be utilized to deliver oligonucleotides to the nucleus of a wide variety of cancer cells to modulate nuclear events such as RNA splicing.  相似文献   

11.
Inhibition of gene expression by antisense oligonucleotides is limited by their low ability to enter cells. Knowing that sugar binding receptors, also called membrane lectins, efficiently internalize neoglycoproteins bearing the relevant sugar, 6-phosphomannose, for instance, oligonucleotides--substituted on their 5'-end with either a fluorescent probe or a radioactive label on the one hand, and bearing a thiol function on their 3'-end, on the other hand,--were coupled onto 6-phosphomannosylated proteins via a disulfide bridge. The oligonucleotide bound to 6-phosphomannosylated serum albumin is much more efficiently internalized roughly 20 times than the free oligonucleotide. Although most of the oligonucleotides are associated with vesicular compartments, oligonucleotides after releasing from the carrier by reduction of the disulfide bridge may find their way to reach the cytosol and then lead to an increase in the efficiency of the oligonucleotides.  相似文献   

12.
13.
Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria.  相似文献   

14.
Minimally modified oligonucleotides belong to the second-generation antisense class. They are phosphodiester oligonucleotides with a minimum of phosphorothioate linkages in order to be protected against serum and cellular exonucleases and endonucleases. They activate RNase H, have weak interactions with proteins, and have thus a better antisense efficiency. Two of them have been designed from an all-phosphorothioate antisense oligonucleotide directed against mdrl-expressing cells. They are protected against serum and cellular enzymatic degradation by the self-forming hairpin d(GCGAAGC) at their 3'-end and by judiciously located phosphorothioate residues, depending on the cellular composition in exonucleases or endonucleases. Besides their already demonstrated ability to cleave pyrimidine sites, endonucleases show some specificity for CpG sites. Their activity is hindered if specific sites are involved in secondary structure as hairpin.  相似文献   

15.
Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca2+ enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ∼100 nm in size are found in Ca2+-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory.  相似文献   

16.
Many carcinoma cells secrete transforming growth factor alpha (TGF alpha). A 23 base anti-sense oligonucleotide that recognizes the TGF alpha mRNA inhibits both DNA synthesis and the proliferation of the colon carcinoma cell line LIM 1215. The effects of the anti-sense TGF alpha oligonucleotide are reversed by epidermal growth factor (EGF) at 20 ng/ml. When the LIM 1215 cells are grown under serum free conditions, the anti-sense TGF alpha oligonucleotides have their greatest effects at high cell density (2 x 10(5) cells/cm2), indicating that the secreted TGF alpha is acting as an exogenous growth stimulus. In addition, at higher cell densities, the kinase activity of the EGF receptor is activated and the receptor is down-modulated. The cell density dependent activation of the EGF receptor is inhibited by the application of the antisense TGF alpha oligonucleotides.  相似文献   

17.
We achieved histological detection of the messenger RNAs coding for vasopressin, calcitonin, or calcitonin gene-related peptide by using biotinylated synthetic oligonucleotides, and defined the technical parameters enabling optimal detection of these mRNAs. Oligonucleotides labeled by fixation of one biotin at their 5' end or by addition of a biotin-11-dUTP tail at their 3' end can be used to detect mRNAs, although the latter are more sensitive. Streptavidin-alkaline phosphatase revealed with nitroblue tetrazolium-bromo-chloro-indolyl phosphate as substrate makes possible detection of the biotinylated oligonucleotides. Increasing formaldehyde concentration in the fixative decreases the signal intensity; 1% formaldehyde fixation provides the most intense signal. Several controls, including those with addition of unlabeled oligonucleotides to the hybridization buffer, confirm the specificity of mRNA detection. The sensitivity of the biotinylated probes is identical or lower as compared to the corresponding radiolabeled oligonucleotides. Histological and subcellular resolution is greatly enhanced with biotinylated probes. The rat vasopressin probes stain magnocellular neurons in the supraoptic and paraventricular nuclei and, under optimal conditions, parvocellular neurons in the suprachiasmatic nucleus. Vasopressin mRNA is present in the cytoplasm of the cell bodies and in the roots of certain processes. Calcitonin and calcitonin gene-related peptide mRNA are found co-localized in the cytoplasm of the same tumor cells in human medullary thyroid carcinoma.  相似文献   

18.
19.
The objective of this investigation was to characterize intranuclear accumulation of oligonucleotides and their adducts with non-karyophilic compounds in cultured animal cells and thus to present a model system for nucleic acid-mediated nuclear import. In digitonin-permeabilized cells, nuclear uptake of 3′-FITC-labeled, single-stranded 25-mer oligodeoxyribonucleotides was independent of added cytosolic protein, largely energy-dependent, inhibitable by wheat germ agglutinin but not by N-ethylmaleimide, and a function of their base composition. When coupled to FITC-labeled streptavidin or streptavidin-bovine serum albumin conjugates, the oligonucleotides delivered the proteins to the nuclear interior with rates roughly proportional to their karyophilicity as free molecules. Transport activity was also demonstrated for single-stranded oligoribonucleotides. The transport was energy-dependent, inhibited by GMP-PNP and wheat germ agglutinin, but unaffected by N-ethylmaleimide. Nuclear import of oligo(dG)25/protein adducts needed 3 to 4 oligonucleotide signals per complex and the signal had to be at least 15 nucleotides long. Micro-injection experiments showed that the results obtained with digitonin-permeabilized cells are not artifacts of a quasi-intact cellular system. These data were confirmed by electron microscopy employing complexes of oligodeoxyribonucleotides with streptavidin-peroxidase-bovine serum albumin-1 nm gold. In permeabilized cells, the complexes docked to the cytoplasmic face of the nuclear pore complexes, were translocated through the central pore channel and accumulated in large quantities in the nuclear baskets before they were released into the nucleoplasm. These results demonstrate that nuclear uptake of oligonucleotides and their complexes is an active process mediated by nuclear pore complexes, which, at least regarding its cytoplasmic component, is different from the pathway requiring classical nuclear localization signals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号