首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of 155 neurons 3 weeks after neuronal isolation of a slab of auditory cortex (area AI) to single intracortical stimulating pulses at the level of layer IV were studied in unanesthetized, curarized cats during paroxysmal electrical activity evoked by series of high-frequency (10–20 Hz) electrical stimulation by a current 2–5 times above threshold for the direct cortical response. In response to such stimulation a discharge of paroxysmal electrical activity, lasting from a few seconds to tens of seconds, appeared in the slab. As a rule it consisted of two phases — tonic and clonic. This indicates that cortical neurons can form both phases of paroxysmal cortical activity. Depending on behavior of the neurons during paroxysmal electrical activity and preservation of their ability to respond to intracortical stimulation at this time, all cells tested in the isolated slab were divided into four groups. Their distribution layer by layer and by duration of latent periods was studied. Two-thirds of the neurons tested were shown to generate spike activity during paroxysmal discharges whereas the rest exhibited no such activity. A special role of neurons in layer II in generation of paroxysmal activity in the isolated slab was noted. The view is expressed that at each moment functional neuronal circuits, independent of each other, exist in the slab and also, evidently in the intact cortex, which can interact with one another when conditions change.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 3–11, January–February, 1984.  相似文献   

2.
Electroencephalography is a valuable aid in diagnosis and prognosis of diseases affecting the brain. It has definite limitations.Abnormal electroencephalograms are either paroxysmal or non-paroxysmal. Both of these changes may be generalized or focal.Epilepsy is primarily associated with paroxysmal activity. Electroencephalography aids in the diagnosis and in determining the severity, course and response to treatment.Non-paroxysmal activity, although less specific in pattern, indicates either generalized or focal pathologic change or some alteration of the normal structure of the brain. Non-paroxysmal activity may give supportive evidence referable to conditions, systemic or intracranial, which disturb the state of consciousness.  相似文献   

3.
Experiments on cats with cooling capsules implanted over different areas of the neocortex have shown that cooling of different intensity applied to the temporal neocortex may result in both stimulation and switching off effects. Cold stimulation (temperature dropping to 27-33 degrees C) manifested in generalized epileptiform brain electrical activity and paroxysmal states. The functional switching off the temporal area observed during its deeper cooling (20-21 degrees C) discontinues the paroxysmal state already developed and prevents the appearance of seizures, regrardless of the localization of the epileptogenic focus. The paroxysmal state weakens and ceases after repeated cooling of the temporal neocortex. The temporal neocortex, involved in the integrated activating brain system, plays a decisive role in the emergence of paroxysmal states.  相似文献   

4.
Electroencephalography (EEG) was applied to evaluate the validity of the paw pinch reflex as an indicator of anaesthetic depth in rats which are anaesthetized with a single intraperitoneal dose of pentobarbital. After induction of the anaesthesia, characterized by the rapid loss of the animals' ability to maintain upright posture, the EEG of 10 out of 11 rats was dominated by paroxysmal (burst suppression) activity, associated with unconsciousness. In seven out of 11 rats, the paw pinch reflex was lost after onset of paroxysmal electroencephalographic activity. However, the paw pinch reflex remained present in four out of 11 animals, demonstrating that the response is independent of cortical activity. In five out of seven rats, the EEG still showed paroxysmal activity when the paw pinch reflex was regained. However, in two other rats the EEG returned to a pattern similar to that shown by awake animals, 4 and 21 min respectively, before the reflex was regained. These data indicate that in the pentobarbital-anaesthetized rat, presence of the paw pinch reflex is not related to the level of depression of electrical activity in the cerebral cortex, and consequently is probably not related to the level of consciousness. Based upon these findings it is concluded that the paw pinch reflex is unreliable as a sole indicator of anaesthetic depth.  相似文献   

5.
Changes in spinal reflexes of rats were studied after the formation of local depression of inhibition (a "determining dispatch station" of paroxysmal activity), generating an increased excitation wave, by means of tetanus toxin. Tonic and rhythmic paroxysmal activity generated in the poisoned half of the lumbar segments was shown to evoke discharges of all spinal and bulbar motoneurons with certain temporal characteristics. Depression of unit activity in the focus with glycine abolished this phenomenon. Excitation of the focus created on one side of the cervical segments evoked a pathologically increased scratch reflex of the ipsilateral hind limb, unconnected with a disturbance of inhibition of lumbar motoneurons. The focus had enhanced excitatory and inhibitory effects on monosynaptic reflexes of lumbar flexor motoneurons. The role of local depression of inhibition in the function of the nervous system is discussed.  相似文献   

6.
Slow-wave sleep: serotonin, neuronal plasticity, and seizures   总被引:4,自引:0,他引:4  
  相似文献   

7.
Entopeduncolar or nigral injection of kainic acid determines an early decrease of the evoked amygdaloid paroxysmal activity and a later increase of the after discharge duration. This biphasic effect is likely due to the structural analogy of the drug with monosodium glutamate, a neuroexcitant amino acid. The data suggest that the basal ganglia exert a tonic control on the amygdaloid activity.  相似文献   

8.
In rats with pain syndrome after sciatic nerve section the authors studied spontaneous and evoked bioelectric activity in sensomotor cerebral cortex of both hemispheres. Electrocorticogram showed the presence of hyper-synchronic discharges and paroxysmal peak-wave (700-800 mV) activity in contralateral hemisphere. While stimulating the injured limb the threshold of evoked potentials (EP) was observed to decrease, its amplitude to increase and focus maximum EP activity to extend.  相似文献   

9.
Changes in seizure activity of the brain evoked by electrical stimulation of the dorsal hippocampus in various stages of sleep and wakefulness were studied in adult cats. During slow sleep, when the EEG is dominated by high-voltage slow waves, near-threshold epileptogenic hippocampal stimulation evokes well-marked paroxysmal discharges. During wakefulness or the paradoxical phase of sleep, when the EEG is desynchronized, this hippocampal stimulation is less effective: either no seizure discharges are produced or they are weak. Activation of the mesencephalic reticular formation before epileptogenic hippocampal stimulation hinders the appearance of seizure activity whereas activation after hippocampal stimulation does not inhibit paroxysmal discharges already in progress; on the contrary, in some cases they are actually strengthened a little. One of the main factors limiting the appearance and spread of seizure activity is considered to be the tonic inhibitory influence of the neocortex on other parts of the brain.  相似文献   

10.
Clinical and spectral analyses of EEG recorded in the first trimester of pregnancy and six to nine months postpartum were performed in 11 women. It was shown that, in all examined women, the spectral power of virtually all rhythms of baseline postpartum EEG was uniquely decreased compared to the EEG during pregnancy in all derivations. To a lesser extent, this was characteristic of the 2 rhythm. Changes in the postpartum EEG were most manifest during hyperventilation, predominantly, in the form of burst and paroxysmal activity. The women were divided into groups with and without postpartum paroxysmal activity. It was observed that abnormal pregnancy was more frequent in women with burst EEG activity in the nopregnant state. This index can be used as a test to reveal the group of risk of unfavorable course of pregnancy.  相似文献   

11.
The thalamus was electrically stimulated in unrestrained rats with implanted cortical and subcortical electrodes. Single pulses often triggered rhythmic cortical activity identical with the 8--9/sec spike episodes which occur spontaneously in rats in the walking state. In rhythmic stimulation of the thalamus, self-sustained 3/sec spike-wave paroxysmal activity, with partial clonic jerks, was observed. Specific and non-specific thalamic nuclei participated in the production of these activities.  相似文献   

12.
20 KDa homologous restriction factor (HRF20) is a membrane glycoprotein which inhibits formation of membrane attack complexes of homologous complement. Erythrocytes from a patient who is completely deficient in HRF20 were readily hemolyzed by homologous complement activated by sucrose or by acidification as in paroxysmal nocturnal hemoglobinuria (PNH). After incubating PNH erythrocytes (PNH-E) with purified HRF20, the cells were analyzed by flow cytometry using a monoclonal antibody to HRF20 and shown to have the antigen absorbed. These PNH-E acquired resistance to hemolysis by homologous complement suggesting that HRF20 may be successfully used for treatment of these patients.  相似文献   

13.
An electroencephalographic study of the brain activity in the wakefulness-sleep cycle was carried out on rats of Krushinskii-Molodkina line (KM) with hereditary predisposition to audiogenic convulsions and on Wistar rats that were insensitive to the convulsiogenic sound effect, but with epileptiform manifestations appearing on the background of cadmium intoxication and administration of kainic acid into the caudate nucleus head. There were revealed several EEG patterns whose presence was an indicator of formation of disorders of the CNS activity of the paroxysmal character in the animals. It has been established that in the phase of the rat rapid-wave sleep, a high representation of episodes with predominance of a-diapason EEG oscillations can be considered a specific non-paroxysmal abnormality due to the presence of convulsive syndrome in these animals. It was shown the long steady decrease of sensitivity of KM rats to the convulsiogenic sound effect, which appeared after multiple audiogenic generalized tonicoclonic convulsive attacks, correlated with a decrease of the degree of theta-diapason oscillations and with an increase of representation of alpha-diapason waves on EEG in the state of the animal quiet consciousness. A role of disintegration in activity of the ascending activating brain systems in the animal and human paroxysmal syndromes is discussed.  相似文献   

14.
The effect of intermittent light stimulation (ILS) on the distribution of thiamine derivatives in three brain areas (occipital, motor, and premotor) was compared in photosensitive and nonphotosensitive baboons. ILS induces paroxysmal discharges in the motor and premotor areas of photosensitive animals only. In baboons submitted to ILS, thiamine triphosphate (TTP) decreases in both photosensitive and nonphotosensitive animals; thiamine monophosphate (TMP) increases in photosensitive animals, which present ILS-induced paroxysmal discharges, whereas it is unaffected in nonphotosensitive animals. The variations are the most significant in the occipital (visual) cortex. A consumption of TTP may result from electrical activity induced by light stimulation in the occipital area. No correlation between ILS-induced paroxysmal activity and a decrease in TTP contents was found. However, photosensitive animals are affected differently from nonphotosensitive animals, as their content of TMP in the cerebral cortex increases on stimulation. However, as long as the exact role of thiamine compounds in relation to membrane excitability in the nervous system remains unknown, it is impossible to conclude whether the differences observed in the metabolism of thiamine compounds are the cause or the consequence of the photosensitivity in the baboon Papio papio.  相似文献   

15.
The effect of diazepam on paroxysmal global electrical activity of a neuronally isolated slab of auditory cortex and on inhibitory responses of its neurons due to intracortical electrical stimulation was investigated in cats. Diazepam (2 mg/kg, intravenously) caused inhibition of paroxysmal electrical activity and increased the number of inhibited neurons in both the acutely isolated slab and three weeks after isolation, compared with the intact cortex. However, the number of disynaptic responses was reduced under these circumstances, especially in the long-isolated slab. It is postulated that diazepam exerts its action through activation of GABA-ergic inhibitory neurons, by synchronizing inhibition and increasing the duration of the IPSPs. The action of diazepam is manifested first, probably, in the initial links of cortical neuron chains.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 3–10, January–February, 1985.  相似文献   

16.
Single unit activity was recorded intracellularly in the zone of an epileptic focus produced by injection of tetanus toxin into the cerebral cortex of cats. Epileptic activity of all neurons tested correlated with cortical discharges between fits. A group of neurons with continuous spontaneous activity, in which a steady fall of membrane potential and cyclic changes in the frequency of the spike discharges were observed was distinguished. In these neurons paroxysmal depolarization changes of membrane potential were found in the discharges between fits, without subsequent hyperpolarization of the membrane. Hyperpolarization potentials after paroxysmal depolarization shifts could be observed in neurons of other groups. The role of neurons of the different groups in the formation of an "epileptic aggregate," the main generator of pathologically enhanced excitation, is discussed.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Institute of Clinical and Experimental Neurology, Ministry of Health of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 582–589, November–December, 1978.  相似文献   

17.
The sera of 14 out of 48 patients with aplastic anemia and four out of nine patients with paroxysmal nocturnal hemoglobinuria (PNH) contained complement-dependent hematopoietic inhibitory activity against allogeneic marrow progenitor cells. Some sera with hematopoietic inhibitory activity, however, demonstrated no effect on autologous marrow progenitor cells. Hematopoietic inhibitory activity was absorbed by pooled, packed platelets. Serum hematopoietic inhibitory activity was present in both IgM and IgG fractions. These data suggested that serum hematopoietic inhibitors are alloantibodies and might be associated with graft rejection in the transplanted marrow of patients with aplastic anemia and PNH.  相似文献   

18.
An astrocytic basis of epilepsy   总被引:23,自引:0,他引:23  
Hypersynchronous neuronal firing is a hallmark of epilepsy, but the mechanisms underlying simultaneous activation of multiple neurons remains unknown. Epileptic discharges are in part initiated by a local depolarization shift that drives groups of neurons into synchronous bursting. In an attempt to define the cellular basis for hypersynchronous bursting activity, we studied the occurrence of paroxysmal depolarization shifts after suppressing synaptic activity using tetrodotoxin (TTX) and voltage-gated Ca(2+) channel blockers. Here we report that paroxysmal depolarization shifts can be initiated by release of glutamate from extrasynaptic sources or by photolysis of caged Ca(2+) in astrocytes. Two-photon imaging of live exposed cortex showed that several antiepileptic agents, including valproate, gabapentin and phenytoin, reduced the ability of astrocytes to transmit Ca(2+) signaling. Our results show an unanticipated key role for astrocytes in seizure activity. As such, these findings identify astrocytes as a proximal target for the treatment of epileptic disorders.  相似文献   

19.
An electroencephalographic study of the brain activity in the wakefulness-sleep cycle was carried out on rats of Krushinskii-Molodkina line (KM) with hereditary predisposition to audiogenic convulsions and on Wistar rats that were insensitive to the convulsiogenic sound effect, but with epileptiform manifestations appearing on the background of cadmium intoxication and administration of kainic acid into the caudate nucleus head. There were revealed several EEG patterns whose presence was an indicator of formation of disorders of the CNS activity of the paroxysmal character in the animals. It has been established that in the phase of the rat rapid-wave sleep, a high representation of episodes with predominance of α-diapason EEG oscillations can be considered a specific non-paroxysmal abnormality due to the presence of convulsive syndrome in these animals. There was shown a long steady decrease of sensitivity of KM rats to the convulsiogenic sound effect, which appeared after multiple audiogenic generalized tonicoclonic convulsive attacks, correlated with a decrease of the degree of ?-diapason oscillations and with an increase of representation of α-diapason waves on EEG in the state of the animal quiet wakefulness. The role of disintegration in activity of the ascending activating brain systems in the animal and human paroxysmal syndromes is discussed.  相似文献   

20.
Intracellular correlates of complex sets of rhythmic cortical "spike and wave" potentials evoked in sensorimotor cortex and of self-sustained rhythmic "spike and wave" activity were examined during acute experiments on cats immobilized by myorelaxants. Rhythmic spike-wave activity was produced by stimulating the thalamic relay (ventroposterolateral) nucleus (VPLN) at the rate of 3 Hz; self-sustained afterdischarges were recorded following 8–14 Hz stimulation of the same nucleus. Components of the spike and wave afterdischarge mainly correspond to the paroxysmal depolarizing shifts of the membrane potential of cortical neurons in length. After cessation of self-sustained spike and wave activity, prolonged hyperpolarization accompanied by inhibition of spike discharges and subsequent reinstatement of background activity was observed in cortical neurons. It is postulated that the negative slow wave of induced spike and wave activity as well as slow negative potentials of direct cortical and primary response reflect IPSP in more deep-lying areas of the cell bodies, while the wave of self-sustained rhythmic activity is due to paroxysmal depolarizing shifts in the membrane potential of cortical neurons.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 298–306, May–June, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号