首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hippocampal precursors retain the capacity to proliferate and differentiate throughout life, and their progeny, immature neurons, can undergo neurogenesis, a process believed to be important in maintaining the cognitive health of an organism. A variety of stresses including irradiation have been shown to deplete neural precursor cells, an effect that inhibits neurogenesis and is associated with the onset of cognitive impairments. Our past work has shown that neural precursor cells exposed to X-rays or protons exhibit a prolonged increase in oxidative stress, a factor we hypothesize to be critical in regulating the function of these cells after irradiation and other stresses. Here we report that irradiation of hippocampal precursor cells with high-linear energy transfer (LET) 1 GeV/nucleon 56Fe ions leads to significantly higher levels of oxidative stress when compared to lower LET radiations (X-rays, protons). Irradiation with 1 Gy of 56Fe ions elicits twofold to fivefold higher levels of reactive oxygen species (ROS) compared to unirradiated controls, and at lower doses (≤1 Gy) neural precursors exhibit a linear dose response 6 h after heavy ion exposure. The use of the antioxidant lipoic acid (LA) was able to reduce ROS levels below background levels when added before or after 56Fe ion irradiation. These results conclusively show that low doses of 56Fe ions can elicit significant levels of oxidative stress in neural precursor cells. Given the prevalence of heavy ions in space and the duration of interplanetary travel, these data suggest that astronauts are at risk for developing cognitive decrements. However, our results also indicate that antioxidants delivered before as radioprotective agents or after as mitigating agents hold promise as effective countermeasures for ameliorating certain adverse effects of heavy ion exposure to the CNS.  相似文献   

2.
Péter Maróti 《BBA》2019,1860(4):317-324
In the native and most mutant reaction centers of bacterial photosynthesis, the electron transfer is coupled to proton transfer and is rate limiting for the second reduction of QB??→?QBH2. In the presence of divalent metal ions (e.g. Cd2+) or in some (“proton transfer”) mutants (L210DN/M17DN or L213DN), the proton delivery to QB? is made rate limiting and the properties of the proton pathway can be directly examined. We found that small weak acids and buffers in large concentrations (up to 1?M) were able to rescue the severely impaired proton transfer capability differently depending on the location of the defects: lesions at the protein surface (proton gate H126H/H128H?+?Cd2+), beneath the surface (M17DN?+?Cd2+, L210DN/M17DN) or deep inside the protein (L213DN) could be completely, partially or to very small extent recovered, respectively. Small zwitterionic acids (azide/hydrazoic acid) and buffers (tricine) proved to be highly effective rescuers consistent with their enhanced binding affinity and access to any of the proton acceptors (including QB? itself) in the pathway. As a consequence, back titration of the protons at L212Glu could be observed as a pH-dependence of the rate constant of the charge recombination in the presence of azide or formate. Model calculations support the collective influence of the acid cluster on the change of the protonation states upon extension of the cluster with the bound small acid. In proton transfer mutants, the rescuing agents decreased the free energy of activation together with their enthalpic and entropic components. This is in agreement with the hypothesis that they function as protein-penetrating protonophores delivering protons into the chain and select dominating paths out of many alternate routes. We estimate that the proton delivery will be accelerated in one pathway out of 100–200 alternate pathways. The implications for design of the chemical recovery of impaired intra-protein proton transfer pathways in proton transfer mutants are discussed.  相似文献   

3.
Results of experiments on proton acceleration from aluminum foils and organic films irradiated by laser pulses with intensities of up to 2 × 1019 W/cm2 are presented. To prevent thin targets from destruction by the superluminescence prepulse, a fast light shutter based on a Pockels cell was introduced in the amplifying system of the SOKOL-P facility. As a result, the energy contrast with respect to the superluminescence prepulse increased to 4 × 106, which made it possible to carry out experiments on the irradiation of targets with thicknesses less than 100 nm. It is found that the target material insignificantly affects the yield of accelerated protons.  相似文献   

4.
5.
The kinetics and mechanism of passive and active proton translocation in submitochondrial vesicles, obtained by sonication of beef heart mitochondria, have been studied.Analysis of the anaerobic release of the protons taken up by submitochondrial particles in the respiring steady state shows that proton diffusion consists of two parallel, apparent first-order processes: a fast reaction which, on the basis of its kinetic properties and response to cations and various effectors, is considered to consist of a proton/monovalent cation exchange; and a slow process which, on analogous grounds, is considered as a single electrogenic flux.The study of the various parameters of the respiration-linked active proton translocation and of the accompanying migration of permeant anions and K+ led to the following conclusions: (i) The oxidoreduction-linked proton translocation is electrogenic. (ii) Cation counterflow is not a necessary factor in the respiration-driven proton translocation. (iii) The membrane potential developed by active proton translocation exerts a coupling with respect to permeant cations and anions. (iv) The respiration-driven proton translocation is secondarily coupled, through the ΔμH component of the electrochemical proton gradient and at the level of a proton-cation exchange system of the membrane, to the flow of K+ and Na+.  相似文献   

6.
Qualitative and quantitative aspects of the mechanisms involved in the regulation of cytoplasmic pH during an acid-load have been studied in Acer pseudoplatanus cells. Two main processes, with about the same relative importance, account for the removal of H+ from the cytoplasm, namely a `metabolic consumption' of protons and the excretion of protons or proton-equivalents out of the cells. The metabolic component corresponds to a change in the equilibrium between malate synthesis and degradation leading to a 30% decrease of the malate content of the cells during the period of cytoplasmic pH regulation. Various conditions which severely inhibit the activity of the plasmalemma proton pump ATPase reduce, at most by 50%, the excretion of H+. This suggests that, besides the plasmalemma proton-pump, other systems are involved in the excretion of proton-equivalents. Indirect information on qualitative and quantitative features of these systems is described, which suggests the involvement of Na+ and HCO3 exchanges in the regulation of cytoplasmic pH of acid-loaded cells.  相似文献   

7.
Summary AeratedVicia faba root meristems were irradiated with 1.9 MeV monoenergetic neutrons. This source of neutrons optimally provides one class of particles (recoil protons) with ranges able to traverse cell nuclei at moderate to high-LET. The volumes of theVicia faba nuclei were log-normally distributed with a mean of 1100 µm3. The yield of chromatid-type aberrations was linear against absorbed dose and near-constant over 5 collection periods (2–12 h), after irradiation. Energy deposition events (recoil protons) determined by microdosimetry were related to cytological changes with the finding that 19% of incident recoil protons initiate visible changes inVicia faba chromosomes. It is probable that a substantial fraction of recoil proton track length and deposited energy is in insensitive (non-DNA containing) portions of the nuclear volume.  相似文献   

8.
In photosynthesis, electron transfer along the photosynthetic chain results in a vectorial transfer of protons from the stroma to the lumenal space of the thylakoids. This promotes the generation of an electrochemical proton gradient (Δμ H + ), which comprises a gradient of electric potential (ΔΨ) and of proton concentration (ΔpH). The Δμ H + has a central role in the photosynthetic process, providing the energy source for ATP synthesis. It is also involved in many regulatory mechanisms. The ΔpH modulates the rate of electron transfer and triggers deexcitation of excess energy within the light harvesting complexes. The ΔΨ is required for metabolite and protein transport across the membranes. Its presence also induces a shift in the absorption spectra of some photosynthetic pigments, resulting in the so-called ElectroChromic Shift (ECS). In this review, we discuss the characteristic features of the ECS, and illustrate possible applications for the study of photosynthetic processes in vivo.  相似文献   

9.
Summary Irradiation of meiotic yeast cells with moderate doses of ultraviolet irradiation (1,600 erg/mm2) leads to the arrest of premeiotic DNA synthesis, massive (5–40%) DNA degradation, and a 40–50% loss of cell viability. In contrast, such doses of UV irradiation had a minor effect on viability (15–20% loss) of logarithmically growing cells, and no comparable DNA degradation was observed in irradiated synchronized vegetative cells. Meiotic recombination is also affected by UV irradiation. When administered at a stage comparable to meiotic prophase, low doses of irradiation result in a reduction in recombination frequency without significantly affecting cell viability.  相似文献   

10.
Kinetics of proton transfer between lysozyme and a pH indicator p-nitrophenol (p-Np) were measured by the temperature-jump method in a pH range of 6.0–7.0. Two well-defined relaxation processes were observed. The fast process (τ ? 15 μsec) was also observed for a lysozyme derivative succinylated at the terminal α-amino group of Lys 1. Therefore, the fast process was found to be attributable to the proton transfer reaction of His 15 with p-Np. The slow process (τ ? 50 μsec) was found to be characteristic of the proton transfer reaction of Glu 35, because it disappeared completely in solution containing a lysozyme derivative having an ester crosslink between the carboxyl group of Glu 35 and indol C-2 of Trp 108. The rate constants for proton transfer from Glu 35 and His 15 to p-Np were found to be 9 × 106/sec/M (±65%, 23°C) and 3 × 108/sec/M (±20%, 25°C), respectively. These data indicate that the proton of the carboxyl group of Glu 35 is kinetically stabilized in lysozyme.  相似文献   

11.
The assignment of protein backbone and side-chain NMR chemical shifts is the first step towards the characterization of protein structure. The recent introduction of proton detection in combination with fast MAS has opened up novel opportunities for assignment experiments. However, typical 3D sequential-assignment experiments using proton detection under fast MAS lead to signal intensities much smaller than the theoretically expected ones due to the low transfer efficiency of some of the steps. Here, we present a selective 3D experiment for deuterated and (amide) proton back-exchanged proteins where polarization is directly transferred from backbone nitrogen to selected backbone or sidechain carbons. The proposed pulse sequence uses only 1H–15N cross-polarization (CP) transfers, which are, for deuterated proteins, about 30% more efficient than 1H–13C CP transfers, and employs a dipolar version of the INEPT experiment for N–C transfer. By avoiding HN–C (HN stands for amide protons) and C–C CP transfers, we could achieve higher selectivity and increased signal intensities compared to other pulse sequences containing long-range CP transfers. The REDOR transfer is designed with an additional selective π pulse, which enables the selective transfer of the polarization to the desired 13C spins.  相似文献   

12.
A key feature of the modified Q-cycle of the cytochrome bc1 and related complexes is a bifurcation of QH2 oxidation involving electron transfer to two different acceptor chains, each coupled to proton release. We have studied the kinetics of proton release in chromatophore vesicles from Rhodobacter sphaeroides, using the pH-sensitive dye neutral red to follow pH changes inside on activation of the photosynthetic chain, focusing on the bifurcated reaction, in which 4H+are released on complete turnover of the Q-cycle (2H+/ubiquinol (QH2) oxidized). We identified different partial processes of the Qo-site reaction, isolated through use of specific inhibitors, and correlated proton release with electron transfer processes by spectrophotometric measurement of cytochromes or electrochromic response. In the presence of myxothiazol or azoxystrobin, the proton release observed reflected oxidation of the Rieske iron?sulfur protein. In the absence of Qo-site inhibitors, the pH change measured represented the convolution of this proton release with release of protons on turnover of the Qo-site, involving formation of the ES-complex and oxidation of the semiquinone intermediate. Turnover also regenerated the reduced iron-sulfur protein, available for further oxidation on a second turnover. Proton release was well-matched with the rate limiting step on oxidation of QH2 on both turnovers. However, a minor lag in proton release found at pH?7 but not at pH?8 might suggest that a process linked to rapid proton release on oxidation of the intermediate semiquinone involves a group with a pK in that range.  相似文献   

13.
The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H+ + 2e → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.  相似文献   

14.
PurposeThis study provides methodology of calibrating as well as controlling the output for an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay irradiated in a low energy proton beam using EBT3-model GAFCHROMICTM film, without correcting for quenching effect.MethodsA calibrated Markus ionization chamber was used to measure the depth dose and beam output for 26.5 MeV protons produced by a CS30 cyclotron. A time-controlled aluminum cylinder was added in front of the horizontal beam-exit serving as a radiation shutter. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water at a reference depth of 3 mm. EBT3 film was calibrated for doses up to 8 Gy at the same depth. To verify the dose distribution for each 96-well MTT assay plate, EBT3 film was placed at the reference depth during irradiation and cell doses were scaled by measured percent depth dose (PDD) data.ResultsThe radiochromic film dosimetry system in this study provides dose measurements with an uncertainty better than 3.3% for doses higher than 1 Gy. From a single exposure and utilizing the Gaussian shape of the beam, multiple dose points can be obtained within different wells of the same plate ranging from 6.9 Gy (sigma ∼4%) in the central well, and 2 Gy (sigma ∼8%) for wells positioned closer to the periphery.ConclusionsWe described a methodology for radiochromic film-based dose monitoring system, using low-energy protons, which can be used for the MTT assay in any proton beam, except within Bragg peak region.  相似文献   

15.
To provide an in-depth insight into the molecular basis of spontaneous tautomerism in DNA and RNA base pairs, a hybrid Monte Carlo (MC)–quantum chemical (QC) methodology is implemented to map two-dimensional potential energy surfaces along the reaction coordinates of solvent-assisted proton transfer processes in guanosine and its analog acyclovir in aqueous solution. The solvent effects were simulated by explicit inclusion of water molecules that model the relevant part of the first hydration shell around the solute. The position of these water molecules was estimated by carrying out a classical Metropolis Monte Carlo simulation of dilute water solutions of the guanosine (Gs) and acyclovir (ACV) and subsequently analyzing solute–solvent intermolecular interactions in the statistically-independent MC-generated configurations. The solvent-assisted proton transfer processes were further investigated using two different ab initio MP2 quantum chemical approaches. In the first one, potential energy surfaces of the ‘bare’ finite solute–solvent clusters containing Gs/ACV and four water molecules (MP2/6-31+G(d,p) level) were explored, while within the second approach, these clusters were embedded in ‘bulk’ solvent treated as polarizable continuum (C-PCM/MP2/6-31+G(d,p) level of theory). It was found that in the gas phase and in water solution, the most stable tautomer for guanosine and acyclovir is the 1H-2-amino-6-oxo form followed by the 2-amino-6-(sZ)-hydroxy form. The energy barriers of the water-assisted proton transfer reaction in guanosine and in acyclovir are found to be very similar – 11.74 kcal mol?1 for guanosine and 11.16 kcal mol?1 for acyclovir, and the respective rate constants (k = 1.5?×?101 s?1, guanosine and k = 4.09?×?101 s?1, acyclovir), are sufficiently large to generate the 2-amino-6-(sZ)-hydroxy tautomer. The analysis of the reaction profiles in both compounds shows that the proton transfer processes occur through the asynchronous concerted mechanism.  相似文献   

16.
A novel method is proposed for the study of the conformation in solution of small molecules bound to proteins. In transfer of saturation experiments, irradiation at the frequency of a proton in the bound ligand can result in an intensity change in the signal from a different proton in the free excess ligand via a nuclear Overhauser effect between the two protons in the bound ligand. Approximatel calculations show that the observation of such effects depends upon the close spatial proximity (within about 4.0 Å) of the two protons involved and thus gives useful conformational information. Two examples of this method are given, for the binding of trimethoprim and NADP+, respectively, to Lactobacillus casei dihydrofolate reductase.  相似文献   

17.
The usefulness of selective isotope labelling patterns is demonstrated using the C-terminal SH2 domain of PLC-γ1 selectively 13C labelled at methionine methyl groups. We demonstrate the generation and relaxation of coherences that are second rank in protons and first rank in carbons that derive from quadrupolar order in protons. The decay rates of second rank double quantum proton coherences are measured. These terms exhibit fewer channels for cross-correlated relaxation compared to single quantum coherences. Our results indicate the potential application of the measurement of high order proton coherences to the analysis of dynamics in methyl-bearing side chains.  相似文献   

18.
19.
AimThe aim of the investigation was to determine the undesirable dose coming from neutrons produced in reactions (p,n) in irradiated tissues represented by water.BackgroundProduction of neutrons in the system of beam collimators and in irradiated tissues is the undesirable phenomenon related to the application of protons in radiotherapy. It makes that proton beams are contaminated by neutrons and patients receive the undesirable neutron dose.Materials and methodsThe investigation was based on the Monte Carlo simulations (GEANT4 code). The calculations were performed for five energies of protons: 50 MeV, 55 MeV, 60 MeV, 65 MeV and 75 MeV. The neutron doses were calculated on the basis of the neutron fluence and neutron energy spectra derived from simulations and by means of the neutron fluence–dose conversion coefficients taken from the ICRP dosimetry protocol no. 74 for the antero-posterior irradiation geometry.ResultsThe obtained neutron doses are much less than the proton ones. They do not exceed 0.1%, 0.4%, 0.5%, 0.6% and 0.7% of the total dose at a given depth for the primary protons with energy of 50 MeV, 55 MeV, 60 MeV, 65 MeV and 70 MeV, respectively.ConclusionsThe neutron production takes place mainly along the central axis of the beam. The maximum neutron dose appears at about a half of the depth of the maximum proton dose (Bragg peak), i.e. in the volume of a healthy tissue. The doses of neutrons produced in the irradiated medium (water) are about two orders of magnitude less than the proton doses for the considered range of energy of protons.  相似文献   

20.
The change in apparent molal volume ? of DNA on thermal denaturation in carbonate buffer at pH 11.0 has been determined by the dilatometric method. It was found that ? increases sigmoidally during the helix–coil transition. Several methods, including a colorimetric technique that closely simulates the conditions used in the dilatometric experiments, were employed to estimate the protons lost by the DNA during the transition. These measurements indicated that the extent of the proton loss depends on the counterion present, increasing in the order Li+ < Na+ < K+ < Cs+. The major part of the volume changes observed during the denaturation is due to the volume changes expected to accompany the transfer of protons from the bases guanine and thym ne to carbonate ions. As has been previously reported for the denaturation of DNA at neutral pH, the volume change directly due to the change in shape of the polymer molecules is so small as to be experimentally undetectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号