首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte’s, could be relevant also for other cell types.  相似文献   

2.
Recent studies show that markers for lipid rafts are among the plasma membrane components most likely to be internalized independently of clathrin-coated pits, and there is evidence to suggest that lipid rafts may play a functional role in endocytic trafficking [1-5]. However, lipid rafts themselves are commonly defined purely in biochemical terms, by resistance to detergent extraction. The existence of rafts in live-cell membranes remains controversial [6-8], and their distribution relative to endocytic machinery has not been investigated. This study employs fluorescence resonance energy transfer (FRET) to show that in the plasma membrane (PM) of living cells the glycosphingolipid GM1, labeled with cholera toxin B subunit (CTB) [9,10], is found at least in part within clusters that also include GPI-linked proteins. These clusters are cholesterol-dependent and exclude non-raft proteins such as transferrin receptor and so possess predicted properties of lipid rafts. This type of lipid raft is largely excluded from clathrin-positive regions of the PM. They are found within Caveolin-positive regions at the same concentration as at the rest of the cell surface. The data provide evidence for a model in which lipid rafts are distributed uniformly across most of the PM of nonpolarized cells but are prevented from entering clathrin-coated pits.  相似文献   

3.
Synaptic junctional fractions were separated from rabbit brain by procedures based on combining the methods of Cotman and Taylor [4], Orosz et al. [16, 17] and Lisman et al. [13]. Thin layers of cerebral cortices were homogenized to obtain a crude mitochondrial-synaptosomal fraction. The sedimentation rates of mitochondria and mitochondria containing synaptosomes were increased by raising the density of mitochondria with an insoluble dense formazan deposit inside mitochondria after iodo-nitrotetrazolium treatment. The synaptic plasma membrane fraction isolated by this method contained no mitochondrial contamination. After Triton X-100 treatment the insoluble residues of the detergent were centrifuged through discontinuous sucrose gradients. A great enrichment of morphologically identifiable intact synaptic junctions was observed in some of the obtained interface layers.  相似文献   

4.
McFarland MJ  Barker EL 《Life sciences》2005,77(14):1640-1650
The endocannabinoids are endogenous agonists of the cannabinoid receptors and some members of the transient receptor potential, vanilloid type (TRPV), family of cation channels. Endocannabinoids along with their target receptors comprise a signaling system that is not well characterized. There have been many advances in our collective understanding of endocannabinoid signaling in the last decade and experimental evidence is mounting that pharmacological augmentation of endocannabinoid tone might have a significant therapeutic benefit in several disease states. However, the mechanisms responsible for the biosynthesis, cellular uptake, and intracellular processing of endocannabinoids are not well understood and have been the source of much debate. Recent studies have revealed a role for detergent insoluble membrane domains called lipid rafts in various aspects of signaling associated with the endocannabinoid anandamide. Intact detergent insoluble membrane domains appear to play a role in an anandamide-induced signaling cascade that is independent of G protein-coupled cannabinoid receptors or TRPV channels. Furthermore, detergent insoluble membrane domain-related endocytosis and recycling to lipid rafts appear to regulate the organization and localization of anandamide metabolites. We will discuss the implications that these findings have on the way we view endocannabinoid signaling, trafficking, and processing.  相似文献   

5.
An aminoacyl-tRNA synthetase subunit, p43, was previously demonstrated to be released from mammalian cells, and to function as an extracellular regulator of both angiogenesis and inflammatory responses (Ko et al., [2001] J Biol Chem, 276; 23028; Park et al.[2002], J Biol Chem 277; 45243). Here, we report that p43 is internalized to the endothelial cells via lipid rafts. Exogenous p43 was co-localized on bovine aorta endothelial cells with cholera toxin B (CTB), which binds to cholesterol-enriched lipid rafts. The p43 was rapidly internalized to the cells, as early as 5 min after binding to the surfaces of the cells. p43 bound to the isolated lipid rafts, and its interaction with the lipid rafts, was prevented by high salt content, but not by detergent. This suggests that ionic bonds are involved in the molecular association of p43 with the lipid rafts. Taken together, we conclude that p43 binds to the endothelial cell surface via lipid rafts.  相似文献   

6.
Processes of cell survival, division, differentiation, and death are guided by the binding of signal molecules to receptors, which activates intracellular signaling networks and ultimately elicits genetic, biochemical, or biomechanical responses within the cell. While intracellular mechanisms for these processes have been well studied, little attention has been given to the role extracellular ligand transport and binding may play in signal initiation. Recent studies have found that the localization of receptors in lipid rafts is critical for the functions of many signaling pathways. By concentrating membrane components, rafts may promote essential interactions for signaling. Lipid rafts can also have negative effects on signaling, but mechanisms remain elusive. We propose that raft-mediated receptor clustering can reduce signaling by prolonging the diffusion of ligands to their receptors. We quantify this effect using a simple diffusion-limited binding model that accounts for the spatial distribution of lipid rafts and receptors on the cell surface. We find that receptor clustering can reduce the apparent rate of receptor binding by up to 80%, consistent with observed increases in epidermal growth factor (EGF) binding by up to 100% following disruption of lipid rafts (Pike and Casey 2002 Biochemistry 41:10315-10322; Roepstorff et al. 2002 J Biol Chem 277:18954-18960). Failure to account for the effects of receptor clustering on rates of ligand binding can skew the interpretation of current methods of cancer diagnosis and treatment. Finally, we discuss how the activation of particular signaling pathways can change over time, depending, in part, on the overall level and spatial distribution of the receptors.  相似文献   

7.
Bock J  Gulbins E 《FEBS letters》2003,534(1-3):169-174
Stimulation of CD40 has been previously shown to result in a release of ceramide in small sphingolipid-enriched rafts in the cell membrane [Grassmé et al., J. Immunol. 168 (2002) 298-307]. Those rafts fused to larger signaling platforms that served to cluster CD40. Here, we defined molecular mechanisms of CD40 clustering in membrane platforms. To this end, we replaced the transmembranous domain of CD40 with that of CD45, a molecule known to be excluded from lipid rafts. Murine T cells were stably transfected with wild-type CD40 or chimeric CD40/CD45. Flow cytometry confirmed normal binding properties of the mutant to CD40 ligand. Stimulation with CD40 ligand resulted in clustering of wild-type CD40, while the chimeric CD40/45 receptor failed to cluster. This correlated with a deficiency of the chimeric receptor to activate JNK, p38 MAP kinase and SAPK, known signaling molecules of the intracellular pathway initiated by CD40. Forced crosslinking of the CD40/45 chimeric receptor restored, at least partially, these signaling events. The results suggest that the transmembranous domain of CD40 is central for the recruitment to and clustering of CD40 in membrane platforms.  相似文献   

8.
Membrane cholesterol-sphingolipid 'rafts', which are characterized by their insolubility in the non-ionic detergent Triton X-100 in the cold, have been implicated in the sorting of certain membrane proteins, such as placental alkaline phosphatase (PLAP), to the apical plasma membrane domain of epithelial cells. Here we show that prominin, an apically sorted pentaspan membrane protein, becomes associated in the trans-Golgi network with a lipid raft that is soluble in Triton X-100 but insoluble in another non-ionic detergent, Lubrol WX. At the cell surface, prominin remains insoluble in Lubrol WX and is selectively associated with microvilli, being largely segregated from the membrane subdomains containing PLAP. Cholesterol depletion results in the loss of prominin's microvillus-specific localization but does not lead to its complete intermixing with PLAP. We propose the coexistence within a membrane domain, such as the apical plasma membrane, of different cholesterol-based lipid rafts, which underlie the generation and maintenance of membrane subdomains.  相似文献   

9.
The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98, but the raft fraction, defined by the marker ganglioside GM(1) in the floating fractions following density gradient centrifugation, was heterogeneous in density and protein composition. Thus, another major raft-associated membrane protein, the Na(+), K(+)-ATPase, was found in discrete rafts of lower density, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor and Na(+), K(+)-ATPase were largely soluble in ice cold Triton X-100. This indicates that Brij 98 extraction defines an unusual type of cholesterol-independent lipid rafts that harbour membrane proteins also associated with underlying scaffolding/cytoskeletal proteins such as gephyrin (GABA(A) receptor) and ankyrin G (Na(+), K(+)-ATPase). By providing an ordered membrane microenvironment, lipid rafts may contribute to the clustering of the GABA(A) receptor and the Na(+), K(+)-ATPase at distinct functional locations on the cell surface.  相似文献   

10.
BACKGROUND: A novel flow cytometric assay has been described in an accompanying report (Gombos et al., METHODS: The kinetics of the decrease in immunofluorescence intensity was analyzed after the addition of the raft-preserving Triton X-100 or Nonidet P-40, both of which disrupt the entire membrane. Mild treatments by both detergents leave cells attached to only those proteins that are anchored to the cytoskeleton by rafts or independent of rafts. Agents that affect microfilaments and modulate membrane levels of cholesterol by cyclodextrin were used to distinguish between the raft-mediated and non-raft-related associations of the Pgp. Confocal microscopy and flow cytometric fluorescence energy transfer measurements were used to confirm colocalization of Pgp with raft constituents. RESULTS: The assay was proved to be sensitive enough to resolve differences between the resistance of UIC2-labeled cell-surface Pgps to Triton X-100 versus Nonidet P-40. Approximately 34% of the UIC2 Fab-labeled Pgp molecules were associated with the cytoskeleton through detergent-resistant, cholesterol-sensitive microdomains or directly, whereas approximately 15% were found to be directly linked to the cytoskeleton. Accordingly, confocal microscopy showed that Pgps colocalize with raft markers, mainly in microvilli. Fluorescence resonance energy transfer efficiency data indicating molecular proximity between Pgp and the raft markers CD44, CD59, and G(M1)-gangliosides also suggested that a significant fraction of Pgps resides in raft microdomains. Raft association of Pgp appears to be of functional significance because its modulation markedly affected drug pumping. CONCLUSIONS: By using the flow cytometric detergent resistance assay in kinetic mode, we were able to assess the extent of raft association and actin cytoskeleton anchorage of Pgp expressed at physiologically relevant levels. We demonstrated that a significant fraction of Pgp is raft associated on LS-174-T human colon carcinoma cells and that this localization may influence its transporter function. The kinetic flow cytometric detergent resistance assay presented in this report is considered to be generally applicable for the analysis of molecular interactions of membrane proteins expressed at low levels.  相似文献   

11.
Within the cell membrane glycosphingolipids and cholesterol cluster together in distinct domains or lipid rafts, along with glycosyl-phosphatidylinositol (GPI)-anchored proteins in the outer leaflet and acylated proteins in the inner leaflet of the bilayer. These lipid rafts are characterized by insolubility in detergents such as Triton X-100 at 4 degrees C. Studies on model membrane systems have shown that the clustering of glycosphingolipids and GPI-anchored proteins in lipid rafts is an intrinsic property of the acyl chains of these membrane components, and that detergent extraction does not artefactually induce clustering. Cholesterol is not required for clustering in model membranes but does enhance this process. Single particle tracking, chemical cross-linking, fluorescence resonance energy transfer and immunofluorescence microscopy have been used to directly visualize lipid rafts in membranes. The sizes of the rafts observed in these studies range from 70-370 nm, and depletion of cellular cholesterol levels disrupts the rafts. Caveolae, flask-shaped invaginations of the plasma membrane, that contain the coat protein caveolin, are also enriched in cholesterol and glycosphingolipids. Although caveolae are also insoluble in Triton X-100, more selective isolation procedures indicate that caveolae do not equate with detergent-insoluble lipid rafts. Numerous proteins involved in cell signalling have been identified in caveolae, suggesting that these structures may function as signal transduction centres. Depletion of membrane cholesterol with cholesterol binding drugs or by blocking cellular cholesterol biosynthesis disrupts the formation and function of both lipid rafts and caveolae, indicating that these membrane domains are involved in a range of biological processes.  相似文献   

12.
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.  相似文献   

13.
Anthrax toxin rafts into cells   总被引:2,自引:0,他引:2  
Anthrax toxin binds to a plasma membrane receptor and after endocytosis exerts its deadly effects on the cell. Until now, however, the mechanism of initial toxin uptake was unknown. In this issue, Abrami et al. (2003) demonstrate that toxin oligomerization clusters the anthrax receptor into lipid rafts and this complex is internalized via the clathrin-dependent pathway.  相似文献   

14.
Lipid raft proteome reveals ATP synthase complex in the cell surface   总被引:5,自引:0,他引:5  
Bae TJ  Kim MS  Kim JW  Kim BW  Choo HJ  Lee JW  Kim KB  Lee CS  Kim JH  Chang SY  Kang CY  Lee SW  Lee SW  Ko YG 《Proteomics》2004,4(11):3536-3548
Since detergent-resistant lipid rafts are involved in pathogen invasion, cholesterol homeostasis, angiogenesis, neurodegenerative diseases and signal transduction, protein identification in the rafts could provide important information to study their function. Here, we analyzed detergent-resistant raft proteins isolated from rat liver by capillary liquid chromatography-tandem mass spectrometry. Out of 196 proteins identified, 32% belonged to the raft or plasma membrane, 24% to mitochondrial, 20% to microsomal, 7% to miscellaneous, and 17% are unknown proteins. For example, membrane-bound receptors, trimeric GTP-binding proteins, ATP-binding cassette transporters, and glycosylphosphatidylinositol-anchored proteins were identified in this analysis. Unexpectedly, there were many mitochondrial proteins, raising a new issue for the presence of mitochondrial rafts or the localization of mitochondrial proteins into plasma membrane rafts. We confirmed that ATP synthase alpha and beta were expressed on the surface of the plasma membrane in HepG2 hepatocytes by immunofluorescence, cell surface biotinylation, and cellular fractionation. They had two distinct biochemical properties, detergent insolubility and low density, suggesting that the ATP synthase complex might be located in plasma membrane rafts as well as in the mitochondria.  相似文献   

15.
The lateral distribution and colocalization of HLA I, HLA-DR, and ICAM-1 proteins was studied for the first time in the plasma membrane of two human uveal melanoma cell lines, OCM-1 and OCM-3. Our fluorescence resonance energy transfer and confocal laser scanning microscopic experiments revealed that these molecules are mostly confined to the same membrane regions, where they form similar protein patterns (homo- and hetero-associates) to those found previously on other cell types of lymphoid as well as colorectal carcinoma origin. Confocal microscopic colocalization experiments with GM(1) gangliosides and the GPI-anchored CD59 molecules showed enrichment of HLA I, HLA-DR, and ICAM-1 molecules in specific membrane domains (lipid rafts) excluding the transferrin receptor. IFN-gamma remarkably increased the expression levels of these molecules and rearranged their association patterns, which can affect the adoptive immune response of effector cells.  相似文献   

16.
Treatment of 6-h differentiated Dictyostelium discoideum cells with the nonionic detergent Triton X-100 dissolves away membranes and soluble components, as judged by marker enzyme distributions, leaving intact a cytoskeletal residue that contains approximately 10% of the cell protein and 50% of the actin. Nitrobenzooxadiazo-phallacidin staining for F-actin and electron microscopy of detergent-extracted whole-mounts indicate that the cytoskeletons retain the size and shape of intact cells and contain F-actin in cortical meshworks. The cytoskeletons contain little if any remaining membrane material by morphological criteria, and the plasma membrane enzymes cyclic nucleotide phosphodiesterase and alkaline phosphatase are absent from the insoluble residue, which retains only 15% of the membrane concanavalin A-binding glycoproteins. This detergent-insoluble residue retains a specific [3H]cAMP-binding site with the nucleotide specificity, rapid kinetics and approximate affinity of the cAMP receptor on intact cells. Upon detergent extraction of cells, the number of cAMP-binding sites increases 20-70%. The binding site is attached to the insoluble residue whether or not the cAMP receptor is occupied at the time of detergent addition. The pH dependence for recovery of the insoluble cAMP-binding site is much sharper than that on intact cells or membranes with an optimum at pH 6.1. Conditions of pH and ionic composition that lead to disruption of the cytoskeleton upon detergent treatment also result in the loss of cAMP binding. During differentiation, the detergent- insoluble cAMP binding increases in parallel with cell surface cAMP receptors and chemotaxis to cAMP.  相似文献   

17.
Wilson CW  Chuang PT 《Cell》2006,125(3):435-438
A recent paper in Cell (Yao et al., 2006) and two papers in Developmental Cell (Tenzen et al., 2006; Zhang et al., 2006) identify a new receptor component for Hedgehog, a key morphogen in embryonic development. Many other proteins that bind to Hedgehog in the extracellular matrix or on the cell surface have been identified. In light of these recent discoveries, we discuss how these factors control the stability, transport, reception, and availability of Hedgehog in modulating Hedgehog-mediated responses.  相似文献   

18.
Background information. Netrin‐1 is a bi‐functional cue that attracts or repels different classes of neurons during development. The netrin‐1 receptor DCC (deleted in colorectal cancer) acts as a tyrosine kinase‐associated receptor to mediate the attractive response towards netrin‐1. The lipid raft‐localized Src family kinase Fyn is required for DCC‐mediated axon guidance. DCC functions are also dependent on lipid rafts, membrane microdomains corresponding to a low‐density, detergent‐resistant membrane fraction. However, it remains unclear how the association of DCC with lipid rafts controls netrin‐1 signalling. Results. DCC targeted to lipid rafts represented a minor proportion of total DCC inside the cell, but predominated on the cell surface of both IMR‐32 human neuroblastoma cells and embryonic cortical neurons. Netrin‐1 accumulated in lipid rafts, but had no effect on the targeting of DCC to that compartment, with DCC remaining on the cell surface in lipid rafts through 60 min post‐treatment. However, DCC was able to interact with Fyn, both in the lipid rafts and soluble compartments isolated from embryonic E19 rat brains, whereas early downstream signalling components such as Nck‐1, and total and active focal adhesion kinase were mainly localized to the non‐lipid raft compartment. Conclusions. Together, these results suggest that DCC can be found in raft and non‐raft portions of the plasma membrane, with early signalling events propagated by non‐raft associated DCC.  相似文献   

19.
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has reshaped our daily life and caused > 4 million deaths worldwide (https://covid19.who.int/). Although lockdown and vaccination have improved the situation in many countries, imported cases and sporadic outbreaks pose a constant stress to the prevention and control of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent responsible for COVID-19, has a positive-sense single-stranded RNA genome of 30 kb (Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, 2020). We and other groups have demonstrated that the SARS-CoV-2 could use the angiotensin-converting enzyme 2 (ACE2) as cell receptor, including orthologs of a broad range of animal species such as human, bats, ferrets, pigs, cats, and dogs (Hoffmann et al., 2020; Zhou et al., 2020; Liu et al., 2021). Although the evolutionary origin of SARS-CoV-2 can be linked to the discoveries of diverse coronaviruses related to SARS-CoV-2 in wild animals such as bats (Zhou et al., 2020; Wacharapluesadee et al., 2021) and pangolins (Liu et al., 2019; Lam et al., 2020), the direct origin of SARS-CoV-2 in humans remains unknown. In China, several sporadic outbreaks of COVID-19 in 2020 were linked to food in cold chain sold at trade markets, including salmon meat (http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml) (Yang et al., 2020). The detection of SARS-CoV-2 RNA on the surface of frozen meat for as long as 20 days has also been reported (Feng et al., 2021). A concern regarding the potential role of fish in SARS-CoV-2 transmission has also been raised. Therefore, we investigated the susceptibility of fish ACE2 to SARS-CoV-2.  相似文献   

20.
The insolubility of lipids in detergents is a useful method for probing the structure of biological membranes. Insolubility in detergents like Triton X-100 is observed in lipid bilayers that exist in physical states in which lipid packing is tight. The Triton X-100-insoluble lipid fraction obtained after detergent extraction of eukaryotic cells is composed of detergent-insoluble membranes rich in sphingolipids and cholesterol. These insoluble membranes appear to arise from sphingolipid- and cholesterol-rich membrane domains (rafts) in the tightly packed liquid ordered state. Because the degree of lipid insolubility depends on the stability of lipid-lipid interactions relative to lipid-detergent interactions, the quantitative relationship between rafts and detergent-insoluble membranes is complex, and can depend on lipid composition, detergent and temperature. Nevertheless, when used conservatively detergent insolubility is an invaluable tool for studying cellular rafts and characterizing their composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号