首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that venous emptying serves as a stimulus for vasodilation in the human forearm. We compared the forearm blood flow (FBF; pulsed Doppler mean blood velocity and echo Doppler brachial artery diameter) response to temporary elevation of a resting forearm from below to above heart level when venous volume was allowed to drain versus when venous drainage was prevented by inflation of an upper arm cuff to approximately 30 mmHg. Arm elevation resulted in a rapid reduction in venous volume and pressure. Cuff inflation just before elevation effectively prevented these changes. FBF was briefly reduced by approximately 16% following arm elevation. A transient (86%) increase in blood flow began by approximately 5 s of arm elevation and peaked by 8 s, indicating a vasodilation. This response was completely abolished by preventing venous emptying. Arterial inflow below heart level was markedly elevated by 343% following brief (4 s) forearm elevation. This hyperemia was minor when venous emptying during forearm elevation had been prevented. We conclude that venous emptying serves as a stimulus for a transient (within 10 s) vasodilation in vivo. This vasodilation can substantially elevate arterial inflow.  相似文献   

2.
Local vasoconstriction plays an important role in maintaining blood pressure in spinal cord-injured individuals (SCI). We aimed to unravel the mechanisms of local vasoconstriction [venoarteriolar reflex (VAR) and myogenic response] using both limb dependency and cuff inflation in SCI and compare these with control subjects. Limb blood flow was measured in 11 male SCI (age: 24-55 yr old) and 9 male controls (age: 23-56 yr old) using venous occlusion plethysmography in forearm and calf during three levels of 1) limb dependency, and 2) cuff inflation. During limb dependency, vasoconstriction relies on both the VAR and the myogenic response. During cuff inflation, the decrease in blood flow is caused by the VAR and by a decrease in arteriovenous pressure difference, whereas the myogenic response does not play a role. At the highest level of leg dependency, the percent increase in calf vascular resistance (mean arterial pressure/calf blood flow) was more pronounced in SCI than in controls (SCI 186 +/- 53%; controls 51 +/- 17%; P = 0.032). In contrast, during cuff inflation, no differences were found between SCI and controls (SCI 17 +/- 17%; controls 14 +/- 10%). Percent changes in forearm vascular resistance in response to either forearm dependency or forearm cuff inflation were equal in both groups. Thus local vasoconstriction during dependency of the paralyzed leg in SCI is enhanced. The contribution of the VAR to local vasoconstriction does not differ between the groups, since no differences between groups existed for cuff inflation. Therefore, the augmented local vasoconstriction in SCI during leg dependency relies, most likely, on the myogenic response.  相似文献   

3.
We dissected the relative contribution of arteriovenous hemodynamics, the venoarteriolar response (VAR), and the myogenic reflex toward a decrease in local blood flow induced by venous congestion. Skin blood flow (SkBF) was measured in 12 supine subjects via laser-Doppler flowmetry 1) over areas of forearm and calf skin, in which the VAR was blocked by using eutectic mixture of local anesthetics (EMLA sites) and 2) over the contralateral forearm or calf skin (control sites), using two different techniques: limb dependency of 23-37 cm below the heart and cuff inflation to 40 mmHg. During limb dependency, SkBF decreased at the control sites, whereas it remained unchanged at the EMLA sites. In contrast, during cuff inflation, SkBF decreased at the control sites and also decreased at the EMLA sites. The percent change in SkBF from baseline was greater during cuff inflation than limb dependency at both the control sites and the EMLA sites. Estimated skin vascular resistance remained unchanged at the EMLA sites during cuff inflation, as well as limb dependency. Thus the decrease in SkBF during venous congestion with cuff inflation is not solely due to the cutaneous VAR but also to a reduction in local perfusion pressure. The VAR is therefore most specifically quantified by venous congestion induced by limb dependency, rather than cuff inflation. Finally, from both techniques, we calculated that during venous congestion induced by limb dependency (calf), approximately 45% of the nonbaroreflex vasoconstriction is induced by the VAR and approximately 55% by the myogenic reflex.  相似文献   

4.
To study the role of venous return from distal parts of the extremities in influencing heat loss from the more proximal parts, changes in mean skin temperature (Tsk) of the non-exercising extremities were measured by color thermography during leg and arm exercise in eight healthy subjects. Thirty minutes of either leg or arm exercise at an ambient temperature (Ta) of 20 degrees C or 30 degrees C produced a greatly increased blood flow in the hand or foot and a great increase in venous return through the superficial skin veins of the extremities. During the first 10 min of recovery from the exercise, blood flow to and venous return from the hand or foot on the tested side was occluded with a wrist or ankle cuff at a pressure of 33.3 kPa (250 mm Hg), while blood flow to the control hand or foot remained undisturbed. During the 10-min wrist occlusion, Tsk increased significantly from 28.3 degrees +/- 0.41 degrees C to 30.1 degrees +/- 0.29 degrees C in the control forearm, but remained at nearly the same level (28.0 degrees +/- 0.34 degrees C to 28.2 degrees +/- 0.25 degrees C) in the occluded forearm. In the legs, although Tsk on both sides was virtually identical (32.0 degrees +/- 0.31 degrees C, control vs 32.0 degrees +/- 0.36 degrees C, tested) before occlusion, Tsk on the control side (32.6 degrees +/- 0.27 degrees C) was significantly higher than that on the tested side (32.2 degrees +/- 0.21 degrees C) after ankle occlusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Venous occlusion strain gauge plethysmography (VOP) is based on the assumption that the veins are occluded and arterial inflow is undisturbed by the venous cuff pressure. Literature is not clear concerning the pressure that should be used. The purpose of this study was to determine the optimal venous occlusion pressure at which the highest arterial inflow is achieved in the forearm, calf, and leg by using VOP. We hypothesized that, for each limb segment, an optimal (range of) venous cuff pressure can be determined. Arterial inflow in each limb segment was measured in nine healthy individuals by VOP by using pressures ranging from 10 mmHg up to diastolic blood pressure. Arterial inflows were similar at cuff pressures between 30 and 60 mmHg for the forearm, leg, and calf. Arterial inflow in the forearm was significantly lower at 10 mmHg compared with the other cuff pressures. In addition, arterial inflows at 20 mmHg tended to be lower in each limb segment than flow at higher cuff pressures. In conclusion, no single optimum venous cuff pressure, at which a highest arterial inflow is achieved, exists, but rather a range of optimum cuff pressures leading to a similar arterial inflow. Venous cuff pressures ranging from 30 mmHg up to diastolic blood pressure are recommended to measure arterial inflow by VOP.  相似文献   

6.
The purpose of the present study was to investigate the effect of a range of water temperatures (Tw from 15 to 36 degrees C) on the tissue temperature profile of the resting human forearm at thermal stability. Tissue temperature (Tti) was continuously monitored by a calibrated multicouple probe during 3 h of immersion of the forearm. The probe was implanted approximately 9 cm distal from the olecranon process along the ulnar ridge. Tti was measured every 5 mm, from the longitudinal axis of the forearm (determined from computed tomography scanning) to the skin surface. Along with Tti, skin temperature (Tsk), rectal temperature (Tre), and blood flow were measured during the immersions. For all temperature conditions, the temperature profile inside the limb was linear as a function of the radial distance from the forearm axis (P less than 0.001). Temperature gradient measured in the forearm ranged from 0.2 +/- 0.1 degrees C C cm (Tw = 36 degrees C) to 2.3 +/- 0.5 degrees C cm (Tw = 15 degrees C). The maximal Tti was measured in all cases at the longitudinal axis of the forearm and was in all experimental conditions lower than Tre. On immersion at Tw less than 36 degrees C, the whole forearm can be considered to be part of the shell of the body. With these experimental data, mathematical equations were developed to predict, with an accuracy of at least 0.6 degrees C, the Tti at any depth inside the forearm at steady state during thermal stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Patients with obstructive sleep apnea (OSA) have been reported to have an augmented pressor response to hypoxic rebreathing. To assess the contribution of the peripheral vasculature to this hemodynamic response, we measured heart rate, mean arterial pressure (MAP), and forearm blood flow by venous occlusion plethysmography in 13 patients with OSA and in 6 nonapneic control subjects at arterial oxygen saturations (Sa(O(2))) of 90, 85, and 80% during progressive isocapnic hypoxia. Measurements were also performed during recovery from 5 min of forearm ischemia induced with cuff occlusion. MAP increased similarly in both groups during hypoxia (mean increase at 80% Sa(O(2)): OSA patients, 9 +/- 11 mmHg; controls, 12 +/- 7 mmHg). Forearm vascular resistance, calculated from forearm blood flow and MAP, decreased in controls (mean change -37 +/- 19% at Sa(O(2)) 80%) but not in patients (mean change -4 +/- 16% at 80% Sa(O(2))). Both groups decreased forearm vascular resistance similarly after forearm ischemia (maximum change from baseline -85%). We conclude that OSA patients have an abnormal peripheral vascular response to isocapnic hypoxia.  相似文献   

8.
We tested the hypothesis that vasoregulatory mechanisms completely counteract the effects of sudden changes in arterial perfusion pressure on exercising muscle blood flow. Twelve healthy young subjects (7 female, 5 male) lay supine and performed rhythmic isometric handgrip contractions (2 s contraction/ 2 s relaxation 30% maximal voluntary contraction). Forearm blood flow (FBF; echo and Doppler ultrasound), mean arterial blood pressure (arterial tonometry), and heart rate (ECG) were measured. Moving the arm between above the heart (AH) and below the heart (BH) level during contraction in steady-state exercise achieved sudden approximately 30 mmHg changes in forearm arterial perfusion pressure (FAPP). We analyzed cardiac cycles during relaxation (FBF(relax)). In an AH-to-BH transition, FBF(relax) increased immediately, in excess of the increase in FAPP (approximately 69% vs. approximately 41%). This was accounted for by pressure-related distension of forearm resistance vasculature [forearm vascular conductance (FVC(relax)) increased by approximately 19%]. FVC(relax) was restored by the second relaxation. Continued slow decreases in FVC(relax) stabilized by 2 min without restoring FBF(relax). In a BH-to-AH transition, FBF(relax) decreased immediately, in excess of the decrease in FAPP (approximately 37% vs. approximately 29%). FVC(relax) decreased by approximately 14%, suggesting pressure-related passive recoil of resistance vessels. The pattern of FVC(relax) was similar to that in the AH-to-BH transition, and FBF(relax) was not restored. These data support rapid myogenic regulation of vascular conductance in exercising human muscle but incomplete flow restoration via slower-acting mechanisms. Local arterial perfusion pressure is an important determinant of steady-state blood flow in the exercising human forearm.  相似文献   

9.
Model studies have been advanced to suggest both that a siphon does and does not support cerebral blood flow in an upright position. If a siphon is established with the head raised, it would mean that internal jugular pressure reflects right atrium pressure minus the hydrostatic difference from the brain. This study measured spinal fluid pressure in the upright position, the pressure and the ultrasound-determined size of the internal jugular vein in the supine and sitting positions, and the internal jugular venous pressure during seated exercise. When the head was elevated approximately 25 cm above the level of the heart, internal jugular venous pressure decreased from 9.5 (SD 2.8) to 0.2 (SD 1.0) mmHg [n = 15; values are means (SD); P < 0.01]. Similarly, central venous pressure decreased from 6.2 (SD 1.8) to 0.6 (SD 2.6) mmHg (P < 0.05). No apparent lumen was detected in any of the 31 left or right internal veins imaged at 40 degrees head-up tilt, and submaximal (n = 7) and maximal exercise (n = 4) did not significantly affect internal jugular venous pressure. While seven subjects were sitting up, spinal fluid pressure at the lumbar level was 26 (SD 4) mmHg corresponding to 0.1 (SD 4.1) mmHg at the base of the brain. These results demonstrate that both for venous outflow from the brain and for spinal fluid, the prevailing pressure approaches zero at the base of the brain when humans are upright, which negates that a siphon supports cerebral blood flow.  相似文献   

10.
We tested the hypothesis that rapid vasodilation proportional to contraction intensity contributes to the immediate (first cardiac cycle after initial contraction) exercise hyperemia. Ten healthy subjects performed single 1-s isometric forearm contractions at 5, 10, 15, 20, 30, 50, and 70% maximal voluntary contraction intensity (MVC) in arm above heart (AH) and below heart (BH) positions. Forearm blood flow (FBF; brachial artery mean blood velocity, Doppler ultrasound), mean arterial pressure (arterial tonometry), and heart rate (electrocardiogram) were measured beat by beat. Venous emptying (measured with a forearm strain gauge) was already maximized at 5% MVC, indicating that increases in contraction intensity did not further empty the forearm veins. Immediate increases in FBF were linearly proportional to contraction intensity from 5 to 70% MVC in AH (slope = 4.4 +/- 0.5%DeltaFBF/%MVC). In BH, the immediate increase in FBF demonstrated a curvilinear relationship with increasing contraction intensity and was greater than AH at 15, 20, 30, and 50% MVC (P < 0.05). Peak changes in FBF were greater in BH vs. AH from 10 to 50% MVC, even when venous refilling was complete (P < 0.05). These data support the existence of a rapid-acting vasodilatory mechanism(s) at the onset of human forearm exercise.  相似文献   

11.
Simultaneous measurements were made of changes in vascular resistance in the forearm and calf in response to moving from supine to sitting or to head-down tilt. The subjects were healthy male volunteers, 21-63 yr. Blood flows were measured by venous occlusion plethysmography using mercury-in-Silastic strain-gauges. The gauges were maintained at the same level relative to the heart during the postural changes. Arterial blood pressure was measured by auscultation; heart rate was counted from the plethysmograms. Changing from supine to sitting caused a decrease in forearm blood flow from 4.13 +/- 0.14 to 2.16 +/- 0.19 ml.100 ml-1.min-1. Corresponding calf flows were 4.21 +/- 0.32 and 4.40 +/- 0.59 ml.100 ml-1.min-1. There was no change in mean arterial blood pressure, and heart rate increased by 8.0 +/- 1.5 beats/min. Arrest of the circulation of both legs with occlusion cuffs on the thighs before sitting, to prevent pooling of blood in them, reduced the degree of forearm vasoconstriction. Neck suction (40 Torr) during sitting, to oppose the decrease in transmural pressure at the carotid sinuses, inhibited the vasoconstriction. During a 30 degrees head-down tilt, there was a dilatation of forearm but not of calf resistance vessels. A Valsalva maneuver caused a similar constriction of both vascular beds. Thus, when changes in vascular resistance in forearm and calf are compared, the major reflex adjustments to changes in posture take place in the forearm.  相似文献   

12.
The mechanisms by which obstructive apneas produce intermittent surges in arterial pressure remain poorly defined. To determine whether termination of obstructive apneas produce peripheral vasoconstriction, we assessed forearm blood flow during and after obstructive events in sleeping patients experiencing spontaneous upper airway obstructions. In all subjects, heart rate was monitored with an electrocardiogram and blood pressure was monitored continuously with digital plethysmography. In 10 patients (protocol 1), we used forearm plethysmography to assess forearm blood flow, from which we calculated forearm vascular resistance by performing venous occlusions during and after obstructive episodes. In an additional four subjects, we used simultaneous Doppler and B-mode images of the brachial artery to measure blood velocity and arterial diameter, from which we calculated brachial flow continuously during spontaneous apneas (protocol 2). In protocol 1, forearm vascular resistance increased 71% after apnea termination (29.3 +/- 15.4 to 49.8 +/- 26.5 resistance units, P < 0.05) with all patients showing an increase in resistance. In protocol 2, brachial resistance increased at apnea termination in all subjects (219.8 +/- 22.2 to 358.3 +/- 46.1 mmHg x l(-1) x min; P = 0.01). We conclude that termination of obstructive apneas is associated with peripheral vasoconstriction.  相似文献   

13.
Sympathetic vasoconstrictor responses are blunted in the vascular beds of contracting muscle (functional sympatholysis), but the mechanism(s) have been difficult to elucidate. We tested the hypothesis that the mechanical effects of muscle contraction blunt sympathetic vasoconstriction in human muscle. We measured forearm blood flow (Doppler ultrasound) and calculated the reductions in forearm vascular conductance (FVC) in response to reflex increases in sympathetic activity evoked via lower body negative pressure (LBNP). In protocol 1, eight young adults were studied under control resting conditions and during simulated muscle contractions using rhythmic forearm cuff inflations (20 inflations/min) with cuff pressures of 50 and 100 mmHg with the arm below heart level (BH), as well as 100 mmHg with the arm at heart level (HL). Forearm vasoconstrictor responses (%DeltaFVC) during LBNP were -26 +/- 2% during control conditions and were not blunted by simulated contractions (range = -31 +/- 3% to -43 +/- 6%). In protocol 2, eight subjects were studied under control conditions and during rhythmic handgrip exercise (20 contractions/min) using workloads of 15% maximum voluntary contraction (MVC) at HL and BH (similar metabolic demand, greater mechanical muscle pump effect for the latter) and 5% MVC BH alone and in combination with superimposed forearm compressions of 100 mmHg (similar metabolic demand, greater mechanical component of contractions for the latter). The forearm vasoconstrictor responses during LBNP were blunted during 15% MVC exercise with the arm at HL (-1 +/- 3%) and BH (-2 +/- 3%) compared with control (-25 +/- 3%; both P < 0.005) but were intact during both 5% MVC alone (-24 +/- 4%) and with superimposed compressions (-23 +/- 4%). We conclude that mechanical effects of contraction per se do not cause functional sympatholysis in the human forearm and that this phenomenon appears to be coupled with the metabolic demand of contracting skeletal muscle.  相似文献   

14.
The requirement for using an arterial occlusion cuff at the wrist when measuring forearm blood flows by plethysmography was tested on a total of 8 subjects at rest and during and after sustained and intermittent isometric exercise. The contribution of the venous effluent from the hand to the forearm flow during exercise was challenged by immersing the arm in water at 20, 34, and 40 degrees C. Occlusion of the circulation to the hand reduced the blood flow through the resting forearm at all water temperatures. There was an inverse relationship between the temperature of the water and the proportion in the reduction of forearm blood flow upon inflation of the wrist-cuff, ranging from 45 to 19% at 20 degrees to 40 degrees C, respectively. However, during sustained isometric exercise at 10% of the subjects maximum voluntary contraction (MVC) there was no reduction in the measured forearm flow when an arterial occlusion cuff was inflated aroung the wrist. Similarly, there was no alteration in the blood flow measured 2 s after each of a series of intermittent isometric contractions exerted at 20% or 60% MVC for 2 s whether or not circulation to the hand was occluded nor of the post-exercise hyperemia following 1 min of sustained contraction at 40% MVC. These results indicate that a wrist-cuff is not required for accurate measurement of forearm blood flows during or after isometric exercise.  相似文献   

15.
In humans, hypoxia leads to increased sympathetic neural outflow to skeletal muscle. However, blood flow increases in the forearm. The mechanism of hypoxia-induced vasodilation is unknown. To test whether hypoxia-induced vasodilation is cholinergically mediated or is due to local release of adenosine, normal subjects were studied before and during acute hypoxia (inspired O(2) 10.5%; approximately 20 min). In experiment I, aminophylline (50-200 microg. min(-1). 100 ml forearm tissue(-1)) was infused into the brachial artery to block adenosine receptors (n = 9). In experiment II, cholinergic vasodilation was blocked by atropine (0.4 mg over 4 min) infused into the brachial artery (n = 8). The responses of forearm blood flow (plethysmography) and forearm vascular resistance to hypoxia in the infused and opposite (control) forearms were compared. During hypoxia (arterial O(2) saturation 77 +/- 2%), minute ventilation and heart rate increased while arterial pressure remained unchanged; forearm blood flow rose by 35 +/- 6% in the control forearm but only by 5 +/- 8% in the aminophylline-treated forearm (P < 0.02). Accordingly, forearm vascular resistance decreased by 29 +/- 5% in the control forearm but only by 9 +/- 6% in the aminophylline-treated forearm (P < 0.02). Atropine did not attenuate forearm vasodilation during hypoxia. These data suggest that adenosine contributes to hypoxia-induced vasodilation, whereas cholinergic vasodilation does not play a role.  相似文献   

16.
The extent to which abnormal endothelium-dependent vasodilator mechanisms contribute to abnormal resting vasoconstriction and blunted reflex vasodilation seen in heart failure is unknown. The purpose of this study was to test the hypothesis that the resting and reflex abnormalities in vascular tone that characterize heart failure are mediated by abnormal endothelium-mediated mechanisms. Thirteen advanced heart-failure patients (New York Heart Association III-IV) and 13 age-matched normal controls were studied. Saline, acetylcholine (20 microg/min), or L-arginine (10 mg/min) was infused into the brachial artery, and forearm blood flow was measured by venous plethysmography at rest and during mental stress. At rest, acetylcholine decreased forearm vascular resistance in normal subjects, but this response was blunted in heart failure. During mental stress with intra-arterial acetylcholine or L-arginine, the decrease in forearm vascular resistance was not greater than during saline control in heart failure [saline control vs. acetylcholine (7 +/- 3 vs. 6 +/- 3, P = NS) or vs. L-arginine (9 +/- 2 units, P = NS)]. The increase in forearm blood flow was not greater than during saline control in heart failure [saline control vs. acetylcholine (1. 2 +/- 0.3 vs. 1.3 +/- 0.3, P = NS), or vs. L-arginine (1.2 +/- 0.2 ml x min(-1) x 100 ml(-1), P = NS)]. Furthermore, during mental stress with nitroprusside, the decrease in forearm vascular resistance was not greater than during saline control [saline control vs. nitroprusside (7 +/- 3 vs. 5 +/- 4 ml x min(-1) x 100 g(-1), P = NS)], and the increase in forearm blood flow was not greater than during saline control [saline control vs. nitroprusside (1.2 +/- 0.3 vs. 1.3 +/- 0.5 ml x min(-1) x 100 g(-1), P = NS)]. Because the endothelial-independent agent nitroprusside was unable to restore resting and reflex vasodilation to normal in heart failure, we conclude that impaired endothelium-mediated vasodilation with acetylholine-nitric oxide cannot be the principal cause of the attenuated resting- or reflex-mediated vasodilation in heart failure.  相似文献   

17.
Previous research has shown that MVO (Maximum Venous Outflow), VR (Venous Reflux), VE (Venous Emptying) and the respiratory waves recording are useful in differentiating occlusion and recanalization in postphlebitic syndrome. In the present work strain-gauge plethysmography was employed to quantitate the venous function after deep venous thrombosis of the legs. The studies were performed in a vascular laboratory with controlled temperature (23 to 25 C); records were obtained by a plethysmograph Parks mod. 270 connected to a Hewlett-Packard multi-channel mod. 7700. 17 patients (12 males, 5 females), mean age 55 years (range 24-75) that presented femoropopliteal thrombophlebitis documented by phlebography at the admission to the hospital were examined. MVO with and without superficial veins occlusion was measured by a mercury in silastic strain-gauge placed circumferentially about the calf. A pneumatic cuff thigh was inflated to 60 mm Hg. VE was measured in patients lying in inclined bed with the lower extremities 100 cm below the heart level compressing the calf with a pneumatic cuff 10 times for 5 seconds; the strain-gauge was placed on the foot level. VR after Valsalva's maneuver and the respiratory waves were recorded by a strain-gauge positioned at the maximum girth about the calf in patients lying on inclinated bed with the lower extremities 50 cm below the heart level. The result are here indicated: (Table: see text) There was differences in the evolution of venous function after deep venous thrombosis of the legs for each patient. Strain-gauge plethysmography may become evaluable non invasive technique in the evaluation of deep venous thrombosis evolution in the legs. The therapeutic assessment of postphlebitic syndrome.  相似文献   

18.
Different magnitudes and durations of postocclusion reactive hyperemia were achieved by occluding different volumes of tissue with and without ischemic exercise to test the hypotheses that flow-mediated dilation (FMD) of the brachial artery would depend on the increase in peak flow rate or shear stress and that the position of the occlusion cuff would affect the response. The brachial artery FMD response was observed by high-frequency ultrasound imaging with curve fitting to minimize the effects of random measurement error in eight healthy, young, nonsmoking men. Reactive hyperemia was graded by 5-min occlusion distal to the measurement site at the wrist and the forearm and proximal to the site in the upper arm. Flow was further increased by exercise during occlusion at the wrist and forearm positions. For the two wrist occlusion conditions, flow increased eightfold and FMD was only 1 to 2% (P > 0.05). After the forearm and upper arm occlusions, blood flow was almost identical but FMD after forearm occlusions was 3.4% (P < 0.05), whereas it was significantly greater (6.6%, P < 0.05) and more prolonged after proximal occlusion. Forearm occlusion plus exercise caused a greater and more prolonged increase in blood flow, yet FMD (7.0%) was qualitatively and quantitatively similar to that after proximal occlusion. Overall, the magnitude of FMD was significantly correlated with peak forearm blood flow (r = 0.59, P < 0.001), peak shear rate (r = 0.49, P < 0.002), and total 5-min reactive hyperemia (r = 0.52, P < 0.001). The prolonged FMD after upper arm occlusion suggests that the mechanism for FMD differs with occlusion cuff position.  相似文献   

19.
We tested thehypothesis that ACh or nitric oxide (NO) might be involved in thevasodilation that accompanies a single contraction of the forearm.Eight adults (3 women and 5 men) completed single 1-s-durationcontractions of the forearm to raise and lower a weight equivalent to~20% maximal voluntary contraction through a distance of 5 cm. In asecond protocol, each subject had a cuff, placed completely about theforearm, inflated to 120 mmHg for a 1-s period, then released as asimulation of the mechanical effect of muscle contraction. Threeconditions were studied, always in this order:1) control, with intra-arterialinfusion of saline; 2) after muscarinic blockade withatropine; and 3) after NO synthase inhibitionwith NG-monomethyl-L-arginine(L-NMMA) plus atropine. Forearm blood flow (FBF),measured by combined pulsed and echo Doppler ultrasound, was reduced atrest with L-NMMA-atropinecompared with the other two conditions. After the single contraction,there were no effects of atropine, butL-NMMA reduced the peak FBF andthe total postcontraction hyperemia. After the single cuff inflation,atropine had no effects, whereasL-NMMA caused changes similar tothose seen after contraction, reducing the peak FBF and the totalhyperemia. The observation thatL-NMMA reduced FBF in responseto both cuff inflation and a brief contraction indicates that NO fromthe vascular endothelium might modulate the basal level of vasculartone and the mechanical component of the hyperemia with exercise. It isunlikely that ACh and NO from the endothelium are involved in thedilator response to a single muscle contraction.

  相似文献   

20.
During exercise in a hot environment, blood flow in the exercising muscles may be reduced in favour of the cutaneous circulation. The aim of our study was to examine whether an acute heat exposure (65-70 degrees C) in sauna conditions reduces the blood flow in forearm muscles during handgrip exercise in comparison to tests at thermoneutrality (25 degrees C). Nine healthy men performed dynamic handgrip exercise of the right hand by rhythmically squeezing a water-filled rubber tube at 13% (light), and at 34% (moderate) of maximal voluntary contraction. The left arm served as a control. The muscle blood flow was estimated as the difference in plethysmographic blood flow between the exercising and the control forearm. Skin blood flow was estimated by laser Doppler flowmetry in both forearms. Oesophageal temperature averaged 36.92 (SEM 0.08) degrees C at thermoneutrality, and 37.74 (SEM 0.07) degrees C (P less than 0.01) at the end of the heat stress. The corresponding values for heart rate were 58 (SEM 2) and 99 (SEM 5) beats.min-1 (P less than 0.01), respectively. At 25 degrees C, handgrip exercise increased blood flow in the exercising forearm above the control forearm by 6.0 (SEM 0.8) ml.100 ml-1.min-1 during light exercise, and by 17.9 (SEM 2.5) ml.100 ml-1.min-1 during moderate exercise. In the heat, the increases were significantly higher: 12.5 (SEM 2.2) ml.100 ml-1.min-1 at the light exercise level (P less than 0.01), and 32.2 (SEM 5.9) ml.100 ml-1.min-1 (P less than 0.05) at the moderate exercise level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号