首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rapid method for determination of phenylalanine (Phe), tyrosine (Tyr), benzoic acid (BZA), phenylacetic acid (PAA), phenyllactic acid (PLA), phenylpyruvic acid (PPY), phenylpropionic acid (PPR), and cinnamic acid (CNM) in goat rumen fluid was established by high-performance liquid chromatography (HPLC). The mobile phase used for isocratic elution was methanol-sodium acetate buffer (pH 6.5) (8:92, v/v). The compounds were monitored at 220 nm with a UV detector. A 5-μl portion of the filtrated rumen was analyzed and the analysis was completed within 20 min. The minimum detectable limits (μM) of these compounds were: 12 for Phe, 3 for Tyr, 3 for BZA, 9 for PAA, 12 for PLA, 15 for PPY, 20 for PPR, and 8 for CNM. The average contents of Phe, BZA, PAA, PLA, and PPR in the rumen fluid of three goats were 15.4, 73.7, 615.9, 51.1, and 39.9 μM before morning feeding, 17.0, 123.7, 650.4, 208.2, and 502.4 μM at 3 h after feeeding, and 18.4, 124.2, 510.0, 129.9, and 178.5 μM at 6 h after feeding, respectively. Of these compounds PAA was present at the highest concentration both before and after feeding. The content of PPR extremely increased especially at 3 h after feeding. The other three compounds, i.e. Tyr, PPY, and CNM, were not detected in goat rumen fluid.  相似文献   

2.
Phenylalanine (Phe) synthesis and the production of other related compounds by mixed ruminal bacteria (B), protozoa (P), and a combination of the two mixture (BP) in an in vitro system were quantitatively investigated using phenylpyruvic acid (PPY) and phenylacetic acid (PAA) as substrates. Rumen microorganisms were collected from fistulated goats fed lucerne cubes (Medicago sativa) and a concentrated mixture twice a day. Microbial suspensions were anaerobically incubated at 39 degrees C for 12 h. Phe and some other related compounds in both supernatants and microbial hydrolysates of the incubations were analysed by HPLC. A large quantity of Phe was produced from both PPY and PAA not only in B but also in P. In B suspensions, free Phe also accumulated in the medium only when PPY was used as a substrate. The ability of B to synthesize Phe from both PPY and PAA (expressed as unit 'per microbial nitrogen') was 5.1 and 24.8% higher than P, respectively. Phe production from PPY in B and P was 43.5 and 55.2% higher than that from PAA. Large amounts of PAA (17-27%) were produced from PPY in all microbial suspension and production amounts were similar in B and P. Small amounts of benzoic acid (BZA) were produced from PPY and PAA in B, P, and BP, and higher BZA production was observed in P as compared to B. Phenylpropionic acid (PPR) was produced in B from both PPY and PAA, but not in P or BP. A trace amount of phenyllactic acid (PLA) was detected only from PPY in B. Higher concentrations of an unknown compound from PPY and PAA were found to be accumulated in the body protein of B and also in the medium of P, and production of the compound from both PPY and PAA was also higher in B than P.  相似文献   

3.
Summary. Aromatic amino acid biosynthesis and production of related compounds from p-hydroxyphenylpyruvic acid (HPY) by mixed rumen bacteria (B), protozoa (P), and their mixture (BP) in an in vitro system were quantitatively investigated. Microbial suspensions prepared from mature, fistulated goats fed Lucerne (Medicago sativa) cubes and a concentrate mixture were anaerobically incubated at 39°C for 12 h. Tyrosine (Tyr), phenylalanine (Phe), tryptophan (Trp) and other related compounds in both supernatants and hydrolyzates of all incubations were analyzed by HPLC. Large amounts of Tyr (27.0, 47.0 and 50.8% of disappeared HPY in B, P and BP, respectively) were produced from 1 mM HPY during a 12-h incubation period. The formation of Tyr in P was 1.8 and 1.6 times higher than those in B and BP, respectively. Appreciable amounts of Phe (3–12% of the disappeared HPY) and Trp (2–10% of the disappeared HPY) were also produced from HPY in B, P, and BP. Phe synthesis in B and P was almost similar but Trp synthesis in B was 1.8 times higher than that in P. The biosynthesis of both Phe and Trp from HPY in BP was higher than those in B plus P. A large amount of p-hydroxyphenylacetic acid (about 45% of the disappeared HPY) was produced from HPY in B which was 1.9 times higher than that in P. p-Hydroxybenzoic acid produced from HPY in P was 1.6 times higher than that in B. Considerable amounts of phenylpropionic acid, phenyllactic acid, and phenylpyruvic acid (2–6% of the disappeared HPY) were produced only in B. Received March 21, 2001 Accepted July 4, 2001  相似文献   

4.
An in vitro study was conducted to examine the metabolism of phenylalanine (Phe) by mixed rumen bacteria (B), mixed rumen protozoa (P), and a combination of the two (BP). Rumen microorganisms were collected from fistulated goats fed lucerne cubes (Medicago sativa) and a concentrated mixture twice a day. Microbial suspensions were anaerobically incubated at 39 degrees C for 12 h. Phe and some other related compounds in both supernatants and microbial hydrolysates of the incubations were analysed by HPLC. The net degradation rate (&mgr;mol/g microbial nitrogen) of Phe in B was about 1.5-fold higher than that in P. Phe was converted mainly into phenylacetic acid (PAA) and unknown compound(s) that presumably involved tyrosine in B, P, and BP during the 12 h incubation period. Small amounts of benzoic acid (BZA), and traces of phenylpropionic acid (PPR) and phenyllactic acid (PLA) were also produced from Phe. PAA production in B was found to be higher than that in P, whereas it was significantly higher in BP. Although BZA production was less than one-tenth that of PAA production, it was higher in P than in B and BP. PPR was detected in both B and BP, but not in P. PLA was detected only in B. The production of unknown compound(s) was higher in B than in P and BP.  相似文献   

5.
K M Denno  T W Sadler 《Teratology》1990,42(5):565-570
The aim of this study was to determine the teratogenicity of phenylalanine (Phe) and Phe metabolites in neurulating mouse embryos. Therefore, the system of whole embryo culture was employed and D9 (neurulating) mouse embryos were exposed to Phe, phenylethylamine (PEA), phenylpyruvic acid (PPA), phenylacetic acid (PAA), 2-OH phenylacetic acid (2-OH PAA), and phenyl-lactic acid (PLA) at concentrations ranging from 0.01 mM to 10 mM for 24 hours. After 24 hours, embryos were examined for morphological abnormalities and protein content by the Lowry method. Phe at 1 and 6 mM concentrations was not teratogenic; however, 10 mM inhibited cranial neural tube closure in 82% of the embryos. PEA was the most toxic factor and concentrations of 1 and 10 mM were embryo-lethal, whereas neural tube closure defects (NTDs) were observed in 67% of the embryos at 0.1 mM. 2-OH PAA was the second most toxic metabolite with concentrations of 1 and 10 mM producing NTDs in 10 and 100% of the embryos, respectively. PLA and PAA produced no NTDs at concentrations of 1 mM, 60% at 5 mM, and 100% at 10 mM. Finally, PPA produced approximately 50% NTDs at both 1 mM and 10 mM concentrations. PLA, PAA, 2-OH PAA, and PPA produced a significant reduction in embryonic protein, and PEA and 2-OH PAA reduced yolk sac protein values. PEA, 2-OH PAA, PPA, PAA, and PLA also produced craniofacial abnormalities, i.e., incomplete expansion of the forebrain, collapse of the optic vesicle, and hypoplasia of the mandible and/or the maxilla.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
An in vitro study was conducted to examine the effects of salinomycin (SL) and vitamin B(6) (B(6)) on the production of phenylalanine (Phe) from phenylpyruvic acid (PPY) and phenylacetic acid (PAA) and of PAA from Phe and PPY by mixed rumen bacteria (B), mixed rumen protozoa (P) and their mixture (BP). Rumen microorganisms were collected from fistulated goats fed lucerne cubes (Medicago sativa) and a concentrate mixture (3 : 1) twice a day. Microbial suspensions were anaerobically incubated at 39 degrees C for 12 h. Phe and some other related compounds in both supernatants and microbial hydrolysates of the incubations were analyzed by HPLC. When PPY was used as a substrate, it completely disappeared without additives and converted mainly to Phe and PAA on the average by 396 and 178, 440 and 189, and 439 and 147 &mgr;M in B, P and BP, respectively, during the 12 h incubation period. The rate of disappearance showed no significant differences between the microbial suspensions with and without SL and B(6) during the incubation period. The production of Phe from PPY with SL was enhanced (p<0.05) by 40, 20 and 19% in B, P and BP, respectively, while PAA production from PPY with SL was inhibited (p<0.05) by 35, 37 and 38% in B, P and BP, respectively, during the 12 h incubation period. On the other hand, with B(6), the production of Phe and PAA from PPY tended to be enhanced by 14 and 17, 9 and 11, and 7 and 22% in B, P and BP, respectively, during the 12 h incubation period. When PAA added as a substrate was incubated in the incubation medium without any additives, it disappeared by 483, 462 and 507 &mgr;M and converted mainly to Phe on the average by 231, 244 and 248 &mgr;M in B, P and BP, respectively. The disappearance of PAA with SL was inhibited (p<0.05) by 16, 15 and 20%, in B, P and BP, respectively, whereas the disappearance of PAA with B6 was almost the same as that without B(6) in B and BP suspensions but tended to be enhanced by more than 9% in P suspensions during the 12 h incubation period. The production of Phe from PAA with SL tended to be inhibited by 12, 11 and 8% in B, P and BP, respectively, during the 6 h incubation period, but the inhibition was weakened during the 12 h incubation period, whereas Phe production from PAA with B(6) tended to be enhanced by 13, 16 and 8% in B, P and BP, respectively. When Phe was added as a substrate, the net Phe disappearance without additives was 549, 365 and 842 &mgr;M and converted mainly to PAA on the average by 254, 205 and 461 &mgr;M in B, P and BP, respectively. The net disappearance of Phe with SL was inhibited (p<0.05) by 38, 28 and 46%, whereas the net disappearance of Phe with B(6) was enhanced (p<0.05) by 9, 8 and 7% in B, P and BP, respectively. The production of PAA from Phe with SL was inhibited (p<0.05) by 73, 54 and 76% in B, P and BP, respectively. On the other hand, with B(6), PAA production from Phe was enhanced (p<0.05) by 19, 18 and 20% in B, P and BP, respectively. Based on these results, it seems that SL inhibited Phe disappearance and enhanced the synthesis of Phe from PPY, though not from PAA, and accumulated free Phe in the medium, whereas B(6) also enhanced Phe synthesis both from PPY and PAA, which could provide additional amino N for animals.  相似文献   

7.
Phenylketonuria (PKU) (OMIM 261600) is the first Mendelian disease to have an identified chemical cause of impaired cognitive development. The disease is accompanied by hyperphenylalaninemia (HPA) and elevated levels of phenylalanine metabolites (phenylacetate (PAA), phenyllactate (PLA), and phenylpyruvate (PPA)) in body fluids. Here we describe a method to determine the concentrations of PAA, PPA, and PLA in the brain of normal and mutant orthologous mice, the latter being models of human PKU and non-PKU HPA. Stable isotope dilution techniques are employed with the use of [(2)H(5)]-phenylacetic acid and [2,3, 3-(2)H(3)]-3-phenyllactic acid as internal standards. Negative ion chemical ionization (NICI)-GC/MS analyses are performed on the pentafluorobenzyl ester derivatives formed in situ in brain homogenates. Unstable PPA in the homogenate is reduced by NaB(2)H(4) to stable PLA, which is labeled with a single deuterium and discriminated from endogenous PLA in the mass spectrometer on that basis. The method demonstrates that these metabolites are easily measured in normal mouse brain and are elevated moderately in HPA mice and greatly in PKU mice. However, their concentrations are not sufficient in PKU to be "toxic"; phenylalanine itself remains the chemical candidate causing impaired cognitive development.  相似文献   

8.
Summary Rumen contents from three fistulated Japanese native goats fed Lucerne hay cubes (Medicago sativa) and concentrate mixture were collected to prepare the suspensions of mixed rumen bacteria (B), mixed protozoa (P) and a combination of the two (BP). Microbial suspensions were anaerobically incubated at 39°C for 12h with or without 1 MM ofl-phenylalanine (Phe). Phe, tyrosine (Tyr) and other related compounds in both supernatant and microbial hydrolysates of the incubations were analyzed by HPLC. Tyr can be produced from Phe not only by rumen bacteria but also by rumen protozoa. The production of Tyr during 12h incubation in B (183.6 mol/g MN) was 4.3 times higher than that in P. One of the intermediate products between Phe and Tyr seems to bep-hydroxyphenylacetic acid. The rate of the net degradation of Phe incubation in B (76.O mol/g MN/h) was 2.4 times higher than in P. In the case of all rumen microorganisms, degraded Phe was mainly (>53%) converted into phenylacetic acid. The production of benzoic acid was higher in P than in B suspensions. Small amount of phenylpyruvic acid was produced from Phe by both rumen bacteria and protozoa, but phenylpropionic acid and phenyllactic acid were produced only by rumen bacteria.  相似文献   

9.
Replacement of valine by tryptophan or tyrosine at position alpha96 of the alpha chain (alpha96Val), located in the alpha(1)beta(2) subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the alpha96 position. The characteristic of aromatic amino acid substitution at the alpha96 of hemoglobin has been further investigated by producing double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp). r Hb (alpha42Tyr --> Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between alpha42Tyr and beta99Asp in thealpha(1)beta(2) subunit interface of deoxy Hb A. The second mutation, alpha96Val -->Trp, may compensate the functional defects of r Hb (alpha42Tyr --> Phe), if the stability due to the introduction of trypophan at the alpha 96 position is strong enough to overcome the defect of r Hb (alpha42Tyr --> Phe). Double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb (alpha42Tyr --> Phe). (1)H NMR spectroscopic data of r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between alpha 42Tyr and beta 99Asp is essential for the novel oxygen binding properties of deoxy Hb (alpha96Val --> Trp) .  相似文献   

10.
Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH > 11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu–S(Cys) stretching frequency was shifted to higher frequency region at pH 11. The higher frequency shift of Cu–S(Cys) bond is implied the stronger Cu–S(Cys) bond at alkaline transition pH 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH > 11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH > 11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine –SCH3 part and coordinated histidine imidazole moiety. The introduction of π–π interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.  相似文献   

11.
Aromatic amino acid residues within kringle domains play important roles in the structural stability and ligand-binding properties of these protein modules. In previous investigations, it has been demonstrated that the rigidly conserved Trp25 is primarily involved in stabilizing the conformation of the kringle-2 domain of tissue-type plasminogen activator (K2tpA), whereas Trp63, Trp74, and Tyr76 function in omega-amino acid ligand binding, and, to varying extents, in stabilizing the native folding of this kringle module. In the current study, the remaining aromatic residues of K2tPA, viz., Tyr2, Phe3, Tyr9, Tyr35, Tyr52, have been subjected to structure-function analysis via site-directed mutagenesis studies. Ligand binding was not significantly influenced by conservative amino acid mutations at these residues, but a radical mutation at Tyr35 destabilized the interaction of the ligand with the variant kringle. In addition, as reflected in the values of the melting temperatures, changes at Tyr9 and Tyr52 generally destabilized the native structure of K2tPA to a greater extent than changes at Tyr2, Phe3, and Tyr35. Taken together, results to date show that, in concert with predictions from the crystal structure of K2tpA, ligand binding appears to rely most on the integrity of Trp63 and Trp74, and aromaticity at Tyr76. With regard to aromatic amino acids, kringle folding is most dependent on Tyr9, Trp25, Tyr52, Trp63, and Tyr76. As yet, no obvious major roles have been uncovered for Tyr2, Phe3, or Tyr35 in K2tpA.  相似文献   

12.
Li X  Jiang B  Pan B 《Biotechnology letters》2007,29(4):593-597
Phenyllactic acid (PLA) is a novel antimicrobial compound derived from phenylalanine (Phe). Lactobacillus sp. SK007, having high PLA-producing ability, was isolated from Chinese traditional pickles. When 6.1 mM phenylpyruvic acid (PPA) was used to replace Phe as substrate at the same concentration, PLA production increased 14-fold and the fermentation time decreased from 72 h to 24 h with growing cells. With resting cells, however, 6.8 mM PLA could be obtained as optimal yield using the following conditions: 12 mM PPA, 55 mM glucose, pH 7.5, 35°C and 4 h.  相似文献   

13.
Zheng Z  Ma C  Gao C  Li F  Qin J  Zhang H  Wang K  Xu P 《PloS one》2011,6(4):e19030

Background

Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal.

Methodology/Principal Findings

A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA.

Conclusions/Significance

Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.  相似文献   

14.
The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS (MtuDAH7PS) is not inhibited by the addition of Phe, Tyr, or Trp alone, combinations cause significant loss of enzyme activity. In the presence of 200 μm Phe, only 2.4 μm Trp is required to reduce enzymic activity to 50%. Reaction kinetics were analyzed in the presence of inhibitory concentrations of Trp/Phe or Trp/Tyr. In the absence of inhibitors, the enzyme follows Michaelis-Menten kinetics with respect to substrate erythrose 4-phosphate (E4P), whereas the addition of inhibitor combinations caused significant homotropic cooperativity with respect to E4P, with Hill coefficients of 3.3 (Trp/Phe) and 2.8 (Trp/Tyr). Structures of MtuDAH7PS/Trp/Phe, MtuDAH7PS/Trp, and MtuDAH7PS/Phe complexes were determined. The MtuDAH7PS/Trp/Phe homotetramer binds four Trp and six Phe molecules. Binding sites for both aromatic amino acids are formed by accessory elements to the core DAH7PS (β/α)8 barrel that are unique to the type II DAH7PS family and contribute to the tight dimer and tetramer interfaces. A comparison of the liganded and unliganded MtuDAH7PS structures reveals changes in the interface areas associated with inhibitor binding and a small displacement of the E4P binding loop. These studies uncover a previously unrecognized mode of control for the branched pathways of aromatic amino acid biosynthesis involving synergistic inhibition by specific pairs of pathway end products.  相似文献   

15.
Aim: To evaluate the influence of biosynthetic precursors, intermediates and electron acceptors on the production of antifungal compounds [phenyllactic acid (PLA) and hydroxyphenyllactic acid (OH‐PLA)] by Lactobacillus plantarum CRL 778, a strain isolated from home‐made sourdough. Methods and Results: Growth of fermentative activity and antifungal compounds production by Lact. plantarum CRL 778 were evaluated in a chemically defined medium (CDM) supplemented with biosynthetic precursors [phenylalanine (Phe), tyrosine (Tyr)], intermediates [glutamate (Glu), alpha‐ketoglutarate (α‐KG)] and electron acceptors [citrate (Cit)]. Results showed that the highest PLA production (0·26 mmol l?1), the main antifungal compound produced by Lact. plantarum CRL 778, occurred when greater concentrations of Phe than Tyr were present. Both PLA and OH‐PLA yields were increased 2‐folds when Cit was combined with α‐KG instead of Glu at similar Tyr/Phe molar ratio. Similarly, glutamate dehydrogenase (GDH) activity was significantly (P < 0·01) stimulated by α‐KG and Cit in Glu‐free medium. Conclusion: Phe was the major stimulant for PLA formation; however, Cit could increase both PLA and OH‐PLA synthesis by Lact. plantarum CRL 778 probably due to an increase in oxidized NAD+. This effect, as well as the GDH activity, was enhanced by α‐KG and down regulated by Glu. Significance and Impact of the Study: This is the first study where the role of Glu and GDH activity in the PLA and OH‐PLA synthesis was evidenced in sourdough lactic acid bacteria (LAB) using a CDM. These results contribute to the knowledge on the antifungal compounds production by sourdough LAB with potential applications on the baked goods.  相似文献   

16.
Venom toxins were isolated from Formosan cobra (Naja naja atra) by cation-exchange chromatography. Most toxin components could be obtained in relatively pure forms by single-step ion-exchange chromatography whereas an extra step of gel permeation was needed for the separation of phospholipase A2 (PLA2) from the major neurotoxic component, i.e. cobrotoxin. The newer near-IR FT-Raman analytical method has been applied to the characterization of PLA2 in their lyophilized forms. Structural analysis of PLA2 and correlation of Raman spectroscopic data with amino acid compositions were made. The results indicate that phospholipase A2 showed the Raman peak at 1659 cm-1 which is characteristic of the alpha-helical structure in this enzyme. It is also found that the relative Raman signal intensities of Tyr, Phe, Trp and Met residues in purified toxins correlate very well with the structural data obtained from amino acid analysis. The application of near-IR FT-Raman techniques in the detection of the microenvironments of the aromatic amino acids such as Tyr and Trp in the native toxins may prove useful in the investigation of the functional properties of various venom toxins.  相似文献   

17.
The production of auxins, such as indole-3-acetic acid (IAA), by rhizobacteria has been associated with plant growth promotion, especially root initiation and elongation. Six indole-producing bacteria isolated from the rhizosphere of legumes grown in Saskatchewan soils and identified as Pantoea agglomerans spp. were examined for their ability to promote the growth of canola, lentil and pea under gnotobiotic conditions and for tryptophan (Trp)-dependent IAA production. Five of the isolates enhanced root length, root weight or shoot weight by 15–37% in at least one of the plant species, but isolates 3–117 and 5–51 were most consistent in enhancing plant growth across the three species. Indole concentrations in the rhizosphere of plants grown under gnotobiotic conditions increased in the presence of the rhizosphere isolates and when Trp was added 3 days prior to plant harvest. Isolates 3–117, 5–51 and 5–105 were most effective in increasing rhizosphere indole concentrations. Colony hybridization confirmed that all of the isolates possessed the ipdC gene which codes for a key enzyme in the Trp-dependent IAA synthetic pathway. The activity of amino acid aminotransferase (AAT), catalyzing the first step in the Trp-dependent synthetic pathway, was examined in the presence of Trp and other aromatic amino acids. All of the isolates accumulated Trp internally and released different amounts of IAA. The production of IAA from the isolates was greatest in the presence of Trp, ranging from 2.78 to 16.34 μg mg protein−1 in the presence of 250 μg of Trp ml−1. The specific activity of AAT was correlated with the concentration of IAA produced in the presence of Trp but not when tyrosine (Tyr), phenylalanine (Phe) or aspartate (Asp) was used as a sole nitrogen source. Isolate 3–117, which produced significant concentrations of IAA in the presence and absence of Trp, was able to use aromatic amino acids as sole sources of nitrogen and was most consistent in enhancing the growth of canola, lentil and pea may have potential for development as a plant growth-promoting inoculant. Responsible Editor: Peter A. H. Bakker.  相似文献   

18.
Quantum chemistry methods have been applied to charged complexes of the alkali metals Li(+), Na(+), and K(+) with the aromatic amino acids (AAAs) phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp). The geometries of 72 different complexes (Phe·M, Tyr·M, Trp·M, M is Li(+), Na(+), or K(+)) were completely optimized at the B3LYP/6-311+G(d,p) level of density functional theory. The solvent effect on the geometry and stability of individual complexes was studied by making use of a microsolvation model. The interaction enthalpies, entropies, and Gibbs energies of nine different complexes of the systems Phe·M, Tyr·M, and Trp·M (M is Li(+), Na(+), or K(+)) were also determined at the B3LYP density functional level of theory. The calculated Gibbs binding energies of the M(+)-AAA complexes follow the order Phe < Tyr < Trp for all three metal cations studied. Among the three AAAs studied, the indole ring of Trp is the best π donor for alkali metal cations. Our calculations demonstrated the existence of strong cation-π interactions between the alkali metals and the aromatic side chains of the three AAAs. These AAAs comprise about 8% of all known protein sequences. Thus, besides the potential for hydrogen-bond interaction, aromatic residues of Phe, Tyr, and Trp show great potential for π-donor interactions. The existence of cation-π interaction in proteins has also been demonstrated experimentally. However, more complex experimental studies of metal cation-π interaction in diverse biological systems will no doubt lead to more exact validation of these investigations.  相似文献   

19.
Since the addition of either ruminal fluid or a combination of phenylacetic and phenylpropionic acids (PAA/PPA) has previously been shown to dramatically improve cellulose degradation and growth of Ruminococcus albus, it was of interest to determine the effects of these additives on xylan-grown cultures. Although cell-bound xylanase activity increased when either PAA/PPA or ruminal fluid was added to the growth medium, total xylanase did not change, and neither of these supplements affected the growth or xylan-degrading capacity of R. albus 8. Similarly, neither PAA/PPA nor ruminal fluid affected xylan degradation by multiple strains of R. albus when xylan prepared from oat spelts was used as a carbohydrate source. These results show that the xylanolytic potential of R. albus is not conditional on the availability of PAA/PPA or other components of ruminal fluid.  相似文献   

20.
Many microorganisms have been reported to produce compounds that promote plant growth and are thought to be involved in the establishment and maintenance of symbiotic relationships. 3-Phenyllactic acid (PLA) produced by lactic acid bacteria was previously shown to promote root growth in adzuki cuttings. However, the mode of action of PLA as a root-promoting substance had not been clarified. The present study therefore investigated the relationship between PLA and auxin. PLA was found to inhibit primary root elongation and to increase lateral root density in wild-type Arabidopsis, but not in an auxin signaling mutant. In addition, PLA induced IAA19 promoter fused β-glucuronidase gene expression, suggesting that PLA exhibits auxin-like activity. The inability of PLA to promote degradation of Auxin/Indole-3-Acetic Acid protein in a yeast heterologous reconstitution system indicated that PLA may not a ligand of auxin receptor. Using of a synthetic PLA labeled with stable isotope showed that exogenously applied PLA was converted to phenylacetic acid (PAA), an endogenous auxin, in both adzuki and Arabidopsis. Taken together, these results suggest that exogenous PLA promotes auxin signaling by conversion to PAA, thereby regulating root growth in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号