首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Cultures of wild-type Caulobacter crescentus and strains with fla mutations representing 24 genes were pulse-labeled with 14C-amino acids and analyzed by immunoprecipitation to study the synthesis of flagellar components. Most fla mutants synthesize flagellin proteins at a reduced rate, suggesting the existence of some mechanism to prevent the accumulation of unpolymerized flagellin subunits. Two strains contain deletions that appear to remove a region necessary for this regulation. The hook protein does not seem to be subject to this type of regulation and, in addition, appears to be synthesized as a faster-sedimenting precursor. Mutations in a number of genes result in the appearance of degradation products of either the flagellin or the hook proteins. Mutations in flaA, -X, -Y, or -Z result in the production of filaments (stubs) that contain altered ratios of the flagellin proteins. In some flaA mutants, other flagellin-related proteins were assembled into the stub structures in addition to the flagellins normally present. Taken together, these analyses have begun to provide insight into the roles of individual fla genes in flagellum biogenesis in C. crescentus.  相似文献   

7.
Caulobacter crescentus incorporates two distinct, but related proteins into the polar flagellar filament: a 27-kilodalton (kDa) flagellin is assembled proximal to the hook and a 25-kDa flagellin forms the distal end of the filament. These two proteins and a third, related flagellin protein of 29 kDa are encoded by three tandem genes (alpha-flagellin cluster) in the flaEY gene cluster (S.A. Minnich and A. Newton, Proc. Natl. Acad. Sci. USA 84: 1142-1146, 1987). Since point mutations in flagellin genes had not been isolated their requirement for flagellum function and fla gene expression was not known. To address these questions, we developed a gene replacement protocol that uses cloned flagellin genes mutagenized by either Tn5 transposons in vivo or the replacement of specific DNA fragments in vitro by the antibiotic resistance omega cassette. Analysis of gene replacement mutants constructed by this procedure led to several conclusions. (i) Mutations in any of the three flagellin genes do not cause complete loss of motility. (ii) Tn5 insertions in the 27-kDa flagellin gene and a deletion mutant of this gene do not synthesize the 27-kDa flagellin, but they do synthesize wild-type levels of the 25-kDa flagellin, which implies that the 27-kDa flagellin is not required for expression and assembly of the 25-kDa flagellin; these mutants show slightly impaired motility on swarm plates. (iii) Mutant PC7810, which is deleted for the three flagellin genes in the flaEY cluster, does not synthesize the 27- or 29-kDa flagellin, and it is significantly more impaired for motility on swarm plates than mutants with defects in only the 27-kDa flagellin gene. The synthesis of essentially normal levels of 25-kDa flagellin by strain PC7810 confirms that additional copies of the 25-kDa flagellin map outside the flaEY cluster (beta-flagellin cluster) and that these flagellin genes are active. Thus, while the 29- and 27-kDa flagellins are not absolutely essential for motility in C. crescentus, their assembly into the flagellar structure is necessary for normal flagellar function.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
The production of hook protein and flagellin in 29 Fla- mutants of Escherichia coli K-12 was determined by the complement fixation assay. Six mutants produced hook protein, and four of them also produced flagellin. A flaE mutation was introduced into these fla mutants carrying the hook structure. All of these mutants made polyhooks and were used as hosts for a newly isolated host-range mutant of chi phage that has a high affinity for the hook structure. All except one mutant produced significant amounts of progeny phages. A flaD flaE double mutant was that exception which did not yield significant amounts of progeny by the phage propagation method. All of the flaE double mutants produced comparable amounts of polyhooks, and no qualitative difference was detected between chi-sensitive and chi-insensitive mutants by the complement fixation assay. Accordingly, it was thought that the polyhook of the flaD flaE mutant had a mechanical defect for chi phage infection. This assumption was confirmed by tethered-cell experiments; the flaD flaE mutant did not rotate. These results are well explained by a proposed regulation pathway of flagellar genes. flaE mutants can express other genes which govern the final step of the flagellar morphogenesis, whereas flaD mutants cannot rotate, possibly because the mocha operon is not expressed. The results obtained in E. coli were also found to be applicable to Salmonella typhimurium.  相似文献   

17.
In Caulobacter crescentus biogenesis of the flagellar organelle occurs during one stage of its complex life cycle. Thus in synchronous cultures it is possible to assay the sequential synthesis and assembly of the flagellum and hook in vivo with a combination of biochemical and radioimmunological techniques. The periodicity of synthesis and the subcellular compartmentation of the basal hook and filament subunits were determined by radioimmune assay procedures. Unassembled 27,000-dalton (27K) flagellin was preferentially located in isolated membrane fractions, whereas the 25K flagellin was distributed between the membrane and cytoplasm. The synthesis of hook began before that of flagellin, although appreciable overlap of the two processes occurred. Initiation of filament assembly coincided with the association of newly synthesized hook and flagellin subunits. Caulobacter flagella are unusual in that they contain two different flagellin subunits. Data are presented which suggest that the ratio of the two flagellin subunits changes along the length of the filament. Only the newly synthesized 25K flagellin subunit is detected in filaments assembled during the swarmer cell stage. By monitoring the appearance of flagellar hooks in the culture medium, the time at which flagella are released was determined.  相似文献   

18.
19.
20.
The flgE gene encoding the flagellar hook protein of Campylobacter coli VC167-T1 was cloned by immunoscreening of a genomic library constructed in lambdaZAP Express. The flgE DNA sequence was 2,553 bp in length and encoded a protein with a deduced molecular mass of 90,639 Da. The sequence had significant homology to the 5' and 3' sequences of the flgE genes of Helicobacter pylori, Treponema phagedenis, and Salmonella typhimurium. Primer extension analysis indicated that the VC167 flgE gene is controlled by a sigma54 promoter. PCR analysis showed that the flgE gene size and the 5' and 3' DNA sequences were conserved among C. coli and C. jejuni strains. Southern hybridization analyses confirmed that there is considerable sequence identity among the hook genes of C. coli and C. jejuni but that there are also regions within the genes which differ. Mutants of C. coli defective in hook production were generated by allele replacement. These mutants were nonmotile and lacked flagellar filaments. Analyses of flgE mutants indicated that the carboxy terminus of FlgE is necessary for assembly of the hook structure but not for secretion of FlgE and that, unlike salmonellae, the lack of flgE expression does not result in repression of flagellin expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号