首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potassium channels display a high conservation of sequence of the selectivity filter (SF), yet nature has designed a variety of channels that present a wide range of absolute rates of K+ permeation. In KcsA, the structural archetype for K channels, under physiological concentrations, two K+ ions reside in the SF in configurations 1,3 (up state) and 2,4 (down state) and ion conduction is believed to follow a throughput cycle involving a transition between these states. Using free-energy calculations of KcsA, Kv1.2, and mutant channels, we show that this transition is characterized by a channel-dependent energy barrier. This barrier is strongly influenced by the charges partitioned along the sequence of each channel. These results unveil therefore how, for similar structures of the SF, the rate of K+ turnover may be fine-tuned within the family of potassium channels.  相似文献   

2.
Voltage-dependent K(+) channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel's selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K(+) channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca(2+) or Ba(2+), suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K(+)] (47 mV per 10-fold increase in [K(+)]), suggesting that K(+) binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K(+) ≈ Rb(+) > Cs(+) > Na(+) > Li(+) ≈ NMG(+). Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K(+)] using kinetic schemes in which the open-conductive state is stabilized by K(+) binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K(+) dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K(+)-sensitive inactivation gating, a property that may be common to other K(+) channels.  相似文献   

3.
Na(+) conductance through cloned K(+) channels has previously allowed characterization of inactivation and K(+) binding within the pore, and here we have used Na(+) permeation to study recovery from C-type inactivation in human Kv1.5 channels. Replacing K(+) in the solutions with Na(+) allows complete Kv1.5 inactivation and alters the recovery. The inactivated state is nonconducting for K(+) but has a Na(+) conductance of 13% of the open state. During recovery, inactivated channels progress to a higher Na(+) conductance state (R) in a voltage-dependent manner before deactivating to closed-inactivated states. Channels finally recover from inactivation in the closed configuration. In the R state channels can be reactivated and exhibit supernormal Na(+) currents with a slow biexponential inactivation. Results suggest two pathways for entry to the inactivated state and a pore conformation, perhaps with a higher Na(+) affinity than the open state. The rate of recovery from inactivation is modulated by Na(+)(o) such that 135 mM Na(+)(o) promotes the recovery to normal closed, rather than closed-inactivated states. A kinetic model of recovery that assumes a highly Na(+)-permeable state and deactivation to closed-inactivated and normal closed states at negative voltages can account for the results. Thus these data offer insight into how Kv1. 5 channels recover their resting conformation after inactivation and how ionic conditions can modify recovery rates and pathways.  相似文献   

4.
Cyclic nucleotide-gated channels are key components in the transduction of visual and olfactory signals where their role is to respond to changes in the intracellular concentration of cyclic nucleotides. Although these channels poorly select between physiologically relevant monovalent cations, the gating by cyclic nucleotide is different in the presence of Na(+) or K(+) ions. This property was investigated using rod cyclic nucleotide-gated channels formed by expressing the subunit 1 (or alpha) in HEK293 cells. In the presence of K(+) as the permeant ion, the affinity for cGMP is higher than the affinity measured in the presence of Na(+). At the single channel level, subsaturating concentrations of cGMP show that the main effect of the permeant K(+) ions is to prolong the time channels remain open without major changes in the shut time distribution. In addition, the maximal open probability was higher when K(+) was the permeant ion (0.99 for K(+) vs. 0.95 for Na(+)) due to an increase in the apparent mean open time. Similarly, in the presence of saturating concentrations of cAMP, known to bind but unable to efficiently open the channel, permeant K(+) ions also prolong the time channels visit the open state. Together, these results suggest that permeant ions alter the stability of the open conformation by influencing of the O-->C transition.  相似文献   

5.
Both wild-type (WT) and nonconducting W472F mutant (NCM) Kv1.5 channels are able to conduct Na(+) in their inactivated states when K(+) is absent. Replacement of K(+) with Na(+) or NMG(+) allows rapid and complete inactivation in both WT and W472F mutant channels upon depolarization, and on return to negative potentials, transition of inactivated channels to closed-inactivated states is the first step in the recovery of the channels from inactivation. The time constant for immobilized gating charge recovery at -100 mV was 11.1 +/- 0.4 ms (n = 10) and increased to 19.0 +/- 1.6 ms (n = 3) when NMG(+)(o) was replaced by Na(+)(o). However, the decay of the Na(+) tail currents through inactivated channels at -100 mV had a time constant of 129 +/- 26 ms (n = 18), much slower than the time required for gating charge recovery. Further experiments revealed that the voltage-dependence of gating charge recovery and of the decay of Na(+) tail currents did not match over a 60 mV range of repolarization potentials. A faster recovery of gating charge than pore closure was also observed in WT Kv1.5 channels. These results provide evidence that the recovery of the gating elements is uncoupled from that of the pore in Na(+)-conducting inactivated channels. The dissociation of the gating charge movements and the pore closure could also be observed in the presence of symmetrical Na(+) but not symmetrical Cs(+). This difference probably stems from the difference in the respective abilities of the two ions to limit inactivation to the P-type state or prevent it altogether.  相似文献   

6.
The direct ion-dipolar interactions between potassium ion (K(+)) and the two hydroxyl groups of the substrate are the most striking feature of the crystal structure of coenzyme B(12)-dependent diol dehydratase. We carried out density-functional-theory computations to determine whether K(+) can assist the 1,2-shift of the hydroxyl group in the substrate-derived radical. Between a stepwise abstraction/recombination reaction proceeding via a direct hydroxide abstraction by K(+) and a concerted hydroxyl group migration assisted by K(+), only a transition state for the latter concerted mechanism was found from our computations. The barrier height for the transition state from the complexed radical decreases by only 2.3 kcal/mol upon coordination of the migrating hydroxyl group to K(+), which corresponds to a 42-fold rate acceleration at 37 degrees C. The net binding energy upon replacement of the K(+)-bound water for substrate was calculated to be 10.7 kcal/mol. It can be considered that such a large binding energy is at least partly used for the substrate-induced conformational changes in the enzyme that trigger the homolytic cleavage of the Co-C bond of the coenzyme and the subsequent catalysis by a radical mechanism. We propose here a new mechanism for diol dehydratase in which K(+) plays a direct role in the catalysis.  相似文献   

7.
Extracellular acidification is known to decrease the conductance of many voltage-gated potassium channels. In the present study, we investigated the mechanism of H(+)(o)-induced current inhibition by taking advantage of Na(+) permeation through inactivated channels. In hKv1.5, H(+)(o) inhibited open-state Na(+) current with a similar potency to K(+) current, but had little effect on the amplitude of inactivated-state Na(+) current. In support of inactivation as the mechanism for the current reduction, Na(+) current through noninactivating hKv1.5-R487V channels was not affected by [H(+)(o)]. At pH 6.4, channels were maximally inactivated as soon as sufficient time was given to allow activation, which suggested two possibilities for the mechanism of action of H(+)(o). These were that inactivation of channels in early closed states occurred while hyperpolarized during exposure to acid pH (closed-state inactivation) and/or inactivation from the open state was greatly accelerated at low pH. The absence of outward Na(+) currents but the maintained presence of slow Na(+) tail currents, combined with changes in the Na(+) tail current time course at pH 6.4, led us to favor the hypothesis that a reduction in the activation energy for the inactivation transition from the open state underlies the inhibition of hKv1.5 Na(+) current at low pH.  相似文献   

8.
In epithelial Kir7.1 channels a non-conserved methionine in the outer pore region adjacent to the G-Y-G selectivity filter (position +2) was found to determine unique properties for permeant and blocking ions characteristic of a K(+) channel in a single-occupancy state. The monovalent cation permeability sequence of Kir7.1 channels expressed in Xenopus oocytes was Tl(+)>K(+)>Rb(+)NH(4)(+)>Cs(+)>Na(+)>Li(+), but the macroscopic conductance for Rb(+) was approximately 8-fold larger than for the smaller K(+) ions, and decreased approximately 40-fold with the conserved arginine at the +2 position (Kir7.1M125R). Moreover, in Kir7.1 Rb(+) restored the typical permeation properties of other multi-ion channels indicating that a stable coordination of permeant ions at the +2 position defines the initial step in the conduction pathway of Kir channels.  相似文献   

9.
Understanding of the molecular architecture necessary for selective K(+) permeation through the pore of ion channels is based primarily on analysis of the crystal structure of the bacterial K(+) channel KcsA, and structure:function studies of cloned animal K(+) channels. Little is known about the conduction properties of a large family of plant proteins with structural similarities to cloned animal cyclic nucleotide-gated channels (CNGCs). Animal CNGCs are nonselective cation channels that do not discriminate between Na(+) and K(+) permeation. These channels all have the same triplet of amino acids in the channel pore ion selectivity filter, and this sequence is different from that of the selectivity filter found in K(+)-selective channels. Plant CNGCs have unique pore selectivity filters; unlike those found in any other family of channels. At present, the significance of the unique pore selectivity filters of plant CNGCs, with regard to discrimination between Na(+) and K(+) permeation is unresolved. Here, we present an electrophysiological analysis of several members of this protein family; identifying the first cloned plant channel (AtCNGC1) that conducts Na(+). Another member of this ion channel family (AtCNGC2) is shown to have a selectivity filter that provides a heretofore unknown molecular basis for discrimination between K(+) and Na(+) permeation. Specific amino acids within the AtCNGC2 pore selectivity filter (Asn-416, Asp-417) are demonstrated to facilitate K(+) over Na(+) conductance. The selectivity filter of AtCNGC2 represents an alternative mechanism to the well-known GYG amino acid triplet of K(+) channels that has been identified as the critical basis for K(+) over Na(+) permeation through the pore of ion channels.  相似文献   

10.
KtrB is the K(+)-translocating subunit of the K(+)-uptake system KtrAB from bacteria. It is a member of the superfamily of K(+)transporters (SKT proteins) with other sub-families occurring in archaea, bacteria, fungi, plants and trypanosomes. SKT proteins may have originated from small K(+) channels by at least two gene duplication and two gene fusion events. They contain four covalently linked M(1)PM(2) domains, in which M(1) and M(2) stand for transmembrane stretches, and P for a P-loop, which folds back from the external medium into the membrane. SKT proteins distinguish themselves in two important aspects from K(+) channels: first, with just one conserved glycine residue in their P-loops they contain a much simpler K(+)-selectivity filter sequence than K(+) channels with their conserved Thr-Val-Gly-Tyr-Gly sequence. Secondly, the middle part M(2C2) from the long transmembrane stretch M(2C) of KtrB from the bacterium Vibrio alginolyticus forms a gate inside the membrane, which prevents K(+) permeation to the cytoplasm. Beside the mechanism of K(+) transport via KtrB and other SKT proteins existing hypotheses of how the KtrA protein regulates the K(+)-transport activity of KtrB are discussed.  相似文献   

11.
An inward Shaker K(+) channel identified in Zea mays (maize), ZmK2.1, displays strong regulation by external K(+) when expressed in Xenopus laevis (African clawed frog) oocytes or COS cells. ZmK2.1 is specifically activated by K(+) with an apparent K(m) close to 15 mM independent of the membrane hyperpolarization level. In the absence of K(+), ZmK2.1 appears to enter a nonconducting state. Thus, whatever the membrane potential, this maize channel cannot mediate K(+) influx in the submillimolar concentration range, unlike its relatives in Arabidopsis thaliana. Its expression is restricted to the shoots, the strongest signal (RT-PCR) being associated with vascular/bundle sheath strands. Based on sequence and gene structure, the closest relatives of ZmK2.1 in Arabidopsis are K(+) Arabidopsis Transporter 1 (KAT1) (expressed in guard cells) and KAT2 (expressed in guard cells and leaf phloem). Patch-clamp analyses of guard cell protoplasts reveal a higher functional diversity of K(+) channels in maize than in Arabidopsis. Channels endowed with regulation by external K(+) similar to that of ZmK2.1 (channel activity regulated by external K(+) with a K(m) close to 15 mM, regulation independent of external Ca(2+)) constitute a major component of the maize guard cell inward K(+) channel population. The presence of such channels in maize might reflect physiological traits of C4 and/or monocotyledonous plants.  相似文献   

12.
A homology model of the pore region of HCN channels   总被引:4,自引:0,他引:4       下载免费PDF全文
HCN channels are activated by membrane hyperpolarization and regulated by cyclic nucleotides, such as cyclic adenosine-mono-phosphate (cAMP). Here we present structural models of the pore region of these channels obtained by using homology modeling and validated against spatial constraints derived from electrophysiological experiments. For the construction of the models we make two major assumptions, justified by electrophysiological observations: i), in the closed state, the topology of the inner pore of HCN channels is similar to that of K(+) channels. In particular, the orientation of the S5 and S6 helices of HCN channels is very similar to that of the corresponding helices of the K(+) KcsA and K(+) KirBac1.1 channels. Thus, we use as templates the x-ray structure of these K(+) channels. ii), In the open state, the S6 helix is bent further than it is in the closed state, as suggested (but not proven) by experimental data. For this reason, the template of the open conformation is the x-ray structure of the MthK channel. The structural models of the closed state turn out to be consistent with all the available electrophysiological data. The model of the open state turned out to be consistent with all the available electrophysiological data in the filter region, including additional experimental data performed in this work. However, it required the introduction of an appropriate, experimentally derived constraint for the S6 helix. Our modeling provides a structural framework for understanding several functional properties of HCN channels: i), the cysteine ring at the inner mouth of the pore may act as a sensor of the intracellular oxidizing/reducing conditions; ii), the bending amplitude of the S6 helix upon gating appears to be significantly smaller than that found in MthK channels; iii), the reduced ionic selectivity of HCN channels, relative to that of K(+) channels, may be caused, at least in part, by the larger flexibility of the inner pore of HCN channels.  相似文献   

13.
Potassium channels are membrane proteins that selectively conduct K(+) across cellular membranes. The narrowest part of their pore, the selectivity filter, is responsible for distinguishing K(+) from Na(+), and can also act as a gate through a mechanism known as C-type inactivation. It has been proposed that a conformation of the KcsA channel obtained by crystallization in presence of low concentration of K(+) (PDB 1K4D) could correspond to the C-type inactivated state. Here, we show using molecular mechanics simulations that such conformation has little ion-binding affinity and that ions do not contribute to its stability. The simulations suggest that, in this conformation, the selectivity filter is mostly occupied by water molecules. Whether such ion-free state of the KcsA channel is physiologically accessible and representative of the inactivated state of eukaryotic channels remains unclear.  相似文献   

14.
Studies suggest that Ktr/Trk/HKT-type transporters have evolved from multiple gene fusions of simple K(+) channels of the KcsA type into proteins that span the membrane at least eight times. Several positively charged residues are present in the eighth transmembrane segment, M2(D), in the transporters but not K(+) channels. Some models of ion transporters require a barrier to prevent free diffusion of ions down their electrochemical gradient, and it is possible that the positively charged residues within the transporter pore may prevent transporters from being channels. Here we studied the functional role of these positive residues in three Ktr/Trk/HKT-type transporters (Synechocystis KtrB-mediated K(+) uniporter, Arabidopsis AtHKT1-mediated Na(+) uniporter and wheat TaHKT1-mediated K(+)/Na(+) symporter) by examining K(+) uptake rates in E. coli, electrophysiological measurements in oocytes and growth rates of E. coli and yeast. The conserved Arg near the middle of the M2(D) segment was essential for the K(+) transport activity of KtrB and plant HKTs. Combined replacement of several positive residues in TaHKT1 showed that the positive residue at the beginning of the M2(D), which is conserved in many K(+) channels, also contributed to cation transport activity. This positive residue and the conserved Arg both face towards the ion conducting pore side. We introduced an atomic-scale homology model for predicting amino acid interactions. Based on the experimental results and the model, we propose that a salt bridge(s) exists between positive residues in the M2(D) and conserved negative residues in the pore region to reduce electrostatic repulsion against cation permeation caused by the positive residue(s). This salt bridge may help stabilize the transporter configuration, and may also prevent the conformational change that occurs in channels.  相似文献   

15.
The molecular identity of K(+) channels involved in Ehrlich cell volume regulation is unknown. A background K(+) conductance is activated by cell swelling and is also modulated by extracellular pH. These characteristics are most similar to those of newly emerging TASK (TWIK-related acid-sensitive K(+) channels)-type of two pore-domain K(+) channels. mTASK-2, but not TASK-1 or -3, is present in Ehrlich cells and mouse kidney tissue from where the full coding sequences were obtained. Heterologous expression of mTASK-2 cDNA in HEK-293 cells generated K(+) currents in the absence intracellular Ca(2+). Exposure to hypotonicity enhanced mTASK-2 currents and osmotic cell shrinkage led to inhibition. This occurred without altering voltage dependence and with only slight decrease in pK(a) in hypotonicity but no change in hypertonicity. Replacement with other cations yields a permselectivity sequence for mTASK-2 of K(+) > Rb(+) Cs(+) > NH(4)(+) > Na(+) congruent with Li(+), similar to that for the native conductance (I(K, vol)). Clofilium, a quaternary ammonium blocker of I(K, vol), blocked the mTASK-2-mediated K(+) current with an IC(50) of 25 microm. The presence of mTASK-2 in Ehrlich cells, its functional similarities with I(K, vol), and its modulation by changes in cell volume suggest that this two-pore domain K(+) channel participates in the regulatory volume decrease phenomenon.  相似文献   

16.
Ion selectivity of metazoan voltage-gated Na(+) channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF) at the channel pore. Yet, in addition to channels with a preference for Ca(2+) ions, the expression and characterization of Na(+) channel homologs from the sea anemone Nematostella vectensis, a member of the early-branching metazoan phylum Cnidaria, revealed a sodium-selective channel bearing a noncanonical SF. Mutagenesis and physiological assays suggest that pore elements additional to the SF determine the preference for Na(+) in this channel. Phylogenetic analysis assigns the Nematostella Na(+)-selective channel to a channel group unique to Cnidaria, which diverged >540 million years ago from Ca(2+)-conducting Na(+) channel homologs. The identification of Cnidarian Na(+)-selective ion channels distinct from the channels of bilaterian animals indicates that selectivity for Na(+) in neuronal signaling emerged independently in these two animal lineages.  相似文献   

17.
A novel conus peptide ligand for K+ channels   总被引:1,自引:0,他引:1  
Voltage-gated ion channels determine the membrane excitability of cells. Although many Conus peptides that interact with voltage-gated Na(+) and Ca(2+) channels have been characterized, relatively few have been identified that interact with K(+) channels. We describe a novel Conus peptide that interacts with the Shaker K(+) channel, kappaM-conotoxin RIIIK from Conus radiatus. The peptide was chemically synthesized. Although kappaM-conotoxin RIIIK is structurally similar to the mu-conotoxins that are sodium channel blockers, it does not affect any of the sodium channels tested, but blocks Shaker K(+) channels. Studies using Shaker K(+) channel mutants with single residue substitutions reveal that the peptide interacts with the pore region of the channel. Introduction of a negative charge at residue 427 (K427D) greatly increases the affinity of the toxin, whereas the substitutions at two other residues, Phe(425) and Thr(449), drastically reduced toxin affinity. Based on the Shaker results, a teleost homolog of the Shaker K(+) channel, TSha1 was identified as a kappaM-conotoxin RIIIK target. Binding of kappaM-conotoxin RIIIK is state-dependent, with an IC(50) of 20 nm for the closed state and 60 nm at 0 mV for the open state of TSha1 channels.  相似文献   

18.
The fundamental principles underlying voltage sensing, a hallmark feature of electrically excitable cells, are still enigmatic and the subject of intense scrutiny and controversy. Here we show that a novel prokaryotic voltage-gated K(+) (Kv) channel from Listeria monocytogenes (KvLm) embodies a rudimentary, yet robust, sensor sufficient to endow it with voltage-dependent features comparable to those of eukaryotic Kv channels. The most conspicuous feature of the KvLm sequence is the nature of the sensor components: the motif is recognizable; it appears, however, to contain only three out of eight charged residues known to be conserved in eukaryotic Kv channels and accepted to be deterministic for folding and sensing. Despite the atypical sensor sequence, flux assays of KvLm reconstituted in liposomes disclosed a channel pore that is highly selective for K(+) and is blocked by conventional Kv channel blockers. Single-channel currents recorded in symmetric K(+) solutions from patches of enlarged Escherichia coli (spheroplasts) expressing KvLm showed that channel open probability sharply increases with depolarization, a hallmark feature of Kv channels. The identification of a voltage sensor module in KvLm with a voltage dependence comparable to that of other eukaryotic Kv channels yet encoded by a sequence that departs significantly from the consensus sequence of a eukaryotic voltage sensor establishes a molecular blueprint of a minimal sequence for a voltage sensor.  相似文献   

19.
20.
Zhou Y  MacKinnon R 《Biochemistry》2004,43(17):4978-4982
The hydrophobic cell membrane interior presents a large energy barrier for ions to permeate. Potassium channels reduce this barrier by creating a water-filled cavity at the middle of their ion conduction pore to allow ion hydration and by directing the C-terminal "end charge" of four alpha-helices toward the water-filled cavity. Here we have studied the interaction of monovalent cations with the cavity of the KcsA K(+) channel using X-ray crystallography. In these studies, Tl(+) was used as an analogue for K(+) and the total ion-stabilization energy for Tl(+) in the cavity was estimated by measuring its binding affinity. Binding affinity for the Na(+) ion was also measured, revealing a weak selectivity ( approximately 7-fold) favoring Tl(+) over Na(+). The structures of the cavity containing Na(+), K(+), Tl(+), Rb(+), and Cs(+) are compared. These results are consistent with a fairly large (more negative than -100 mV) electrostatic potential inside the cavity, and they also imply the presence of a weak nonelectrostatic component to a cation's interaction with the cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号