首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila melanogaster mount an effective innate immune response against invading microorganisms, but can eventually succumb to persistent pathogenic infections. Understanding of this pathogenesis is limited, but it appears that host factors, induced by microbes, can have a direct cost to the host organism. Mutations in wntD cause susceptibility to Listeria monocytogenes infection, apparently through the derepression of Toll-Dorsal target genes, some of which are deleterious to survival. Here, we use gene expression profiling to identify genes that may mediate the observed susceptibility of wntD mutants to lethal infection. These genes include the TNF family member eiger and the novel immunity gene edin (elevated during infection; synonym CG32185), both of which are more strongly induced by infection of wntD mutants compared to controls. edin is also expressed more highly during infection of wild-type flies with wild-type Salmonella typhimurium than with a less pathogenic mutant strain, and its expression is regulated in part by the Imd pathway. Furthermore, overexpression of edin can induce age-dependent lethality, while loss of function in edin renders flies more susceptible to Listeria infection. These results are consistent with a model in which the regulation of host factors, including edin, must be tightly controlled to avoid the detrimental consequences of having too much or too little activity.  相似文献   

2.
Jin LH  Shim J  Yoon JS  Kim B  Kim J  Kim-Ha J  Kim YJ 《PLoS pathogens》2008,4(10):e1000168
Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-kappaB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila.  相似文献   

3.
Most multicellular organisms show a physiological decline in immune function with age. However, little is known about the mechanisms underlying these changes. We examined Drosophila melanogaster, an important model for identifying genes affecting innate immunity and senescence, to explore the role of phagocytosis in age‐related immune dysfunction. We characterized the localized response of immune cells at the dorsal vessel to bacterial infection in 1‐week‐ and 5‐week‐old flies. We developed a quantitative phagocytosis assay for adult Drosophila and utilized this to characterize the effect of age on phagocytosis in transgenic and natural variant lines. We showed that genes necessary for bacterial engulfment in other contexts are also required in adult flies. We found that blood cells from young and old flies initially engulf bacteria equally well, while cells from older flies accumulate phagocytic vesicles and thus are less capable of destroying pathogens. Our results have broad implications for understanding how the breakdown in cellular processes influences immune function with age.  相似文献   

4.
The innate immune system’s ability to sense an infection is critical so that it can rapidly respond if pathogenic microorganisms threaten the host, but otherwise maintain a quiescent baseline state to avoid causing damage to the host or to commensal microorganisms. One important mechanism for discriminating between pathogenic and non-pathogenic bacteria is the recognition of cellular damage caused by a pathogen during the course of infection. In Caenorhabditis elegans, the conserved G-protein coupled receptor FSHR-1 is an important constituent of the innate immune response. FSHR-1 activates the expression of antimicrobial infection response genes in infected worms and delays accumulation of the ingested pathogen Pseudomonas aeruginosa. FSHR-1 is central not only to the worm’s survival of infection by multiple pathogens, but also to the worm’s survival of xenobiotic cadmium and oxidative stresses. Infected worms produce reactive oxygen species to fight off the pathogens; FSHR-1 is required at the site of infection for the expression of detoxifying genes that protect the host from collateral damage caused by this defense response. Finally, the FSHR-1 pathway is important for the ability of worms to discriminate pathogenic from benign bacteria and subsequently initiate an aversive learning program that promotes selective pathogen avoidance.  相似文献   

5.
6.
Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.  相似文献   

7.
8.
9.
近二十多年,全球范围内先后爆发了由严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)、中东呼吸综合征冠状病毒(middle east respiratory syndrome coronavirus,MERS-CoV)和严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)3种高致病性冠状病毒导致的疫情。这3种高致病性冠状病毒感染通常伴随着免疫系统功能失调,临床表现有淋巴细胞减少症、细胞因子风暴、急性呼吸系统窘迫综合征,甚至多器官衰竭而导致死亡。揭示高致病性冠状病毒在免疫应答中的作用机制,对于预防与控制冠状病毒感染具有重要意义。本文总结了SARS-CoV、MRES-CoV和SARS-CoV-2的进入机制和受体特征、固有免疫应答和适应性免疫应答失调方面的研究进展,强调了高致病性冠状病毒与宿主免疫应答之间的复杂相互作用,以期为防治冠状病毒感染提供参考。  相似文献   

10.
11.
Drosophila melanogaster is widely used to decipher the innate immune system in response to various pathogens. The innate immune response towards persistent virus infections is among the least studied in this model system. We recently discovered a picorna-like virus, the Nora virus which gives rise to persistent and essentially symptom-free infections in Drosophila melanogaster. Here, we have used this virus to study the interaction with its host and with some of the known Drosophila antiviral immune pathways. First, we find a striking variability in the course of the infection, even between flies of the same inbred stock. Some flies are able to clear the Nora virus but not others. This phenomenon seems to be threshold-dependent; flies with a high-titer infection establish stable persistent infections, whereas flies with a lower level of infection are able to clear the virus. Surprisingly, we find that both the clearance of low-level Nora virus infections and the stability of persistent infections are unaffected by mutations in the RNAi pathways. Nora virus infections are also unaffected by mutations in the Toll and Jak-Stat pathways. In these respects, the Nora virus differs from other studied Drosophila RNA viruses.  相似文献   

12.
beta-galactosidase and green fluorescent protein (GFP) are among the most commonly used reporter genes to monitor gene expression in various organisms including Drosophila melanogaster. Their expression is usually detected in a qualitative way by direct microscopic observations of cells, tissues, or whole animals. To measure in vivo the inducibility of two antimicrobial peptide genes expressed during the Drosophila innate immune response, we have adapted two reporter gene systems based on the beta-galactosidase enzymatic activity and GFP. We have designed a 96-well microplate fluorometric assay sensitive enough to quantify the expression of both reporter genes in single flies. The assay has enabled us to process efficiently and rapidly a large number of individual mutant flies generated during an ethylmethane sulfonate saturation mutagenesis of the Drosophila genome. This method may be used in any screen that requires the quantification of reporter gene activity in individual insects.  相似文献   

13.
We report the involvement of an evolutionarily conserved set of mycobacterial genes, the esx-3 region, in evasion of bacterial killing by innate immunity. Whereas high-dose intravenous infections of mice with the rapidly growing mycobacterial species Mycobacterium smegmatis bearing an intact esx-3 locus were rapidly lethal, infection with an M. smegmatis Δesx-3 mutant (here designated as the IKE strain) was controlled and cleared by a MyD88-dependent bactericidal immune response. Introduction of the orthologous Mycobacterium tuberculosis esx-3 genes into the IKE strain resulted in a strain, designated IKEPLUS, that remained susceptible to innate immune killing and was highly attenuated in mice but had a marked ability to stimulate bactericidal immunity against challenge with virulent M. tuberculosis. Analysis of these adaptive immune responses indicated that the highly protective bactericidal immunity elicited by IKEPLUS was dependent on CD4(+) memory T cells and involved a distinct shift in the pattern of cytokine responses by CD4(+) cells. Our results establish a role for the esx-3 locus in promoting mycobacterial virulence and also identify the IKE strain as a potentially powerful candidate vaccine vector for eliciting protective immunity to M. tuberculosis.  相似文献   

14.
Susceptibility to pathogens and genetic variation in disease resistance is assumed to persist in nature because of the high costs of immunity. Within immunity there are different kinds of costs. Costs of immunological deployment, the costs of mounting an immune response, are measured as a change in fitness following immunological challenge. Maintenance costs of immunity are associated with investments of resources into the infrastructure of an immune system and keeping the system at a given level of readiness in the absence of infection. To demonstrate the costs of immunological maintenance in the absence of infection is considered more difficult. In the present study we examined the maintenance costs of the immune system in lines of Drosophila melanogaster that differed in their antibacterial innate immune response under starved and non-starved conditions. Immunodeficient mutant flies that have to invest less in the immunological maintenance were found to live longer under starvation than wild type flies, whereas the opposite was found when food was provided ad libitum. Our study provides evidence for the physiological cost of immunological maintenance and highlights the importance of environmental variation in the study of evolutionary trade-offs.  相似文献   

15.
The founding member of the inhibitor of apoptosis protein (IAP) family was originally identified as a cell death inhibitor. However, recent evidence suggests that IAPs are multifunctional signaling devices that influence diverse biological processes. To investigate the in vivo function of Drosophila melanogaster IAP2, we have generated diap2 null alleles. diap2 mutant animals develop normally and are fully viable, suggesting that diap2 is dispensable for proper development. However, these animals were acutely sensitive to infection by gram-negative bacteria. In Drosophila, infection by gram-negative bacteria triggers the innate immune response by activating the immune deficiency (imd) signaling cascade, a NF-kappaB-dependent pathway that shares striking similarities with the pathway of mammalian tumor necrosis factor receptor 1 (TNFR1). diap2 mutant flies failed to activate NF-kappaB-mediated expression of antibacterial peptide genes and, consequently, rapidly succumbed to bacterial infection. Our genetic epistasis analysis places diap2 downstream of or in parallel to imd, Dredd, Tak1, and Relish. Therefore, DIAP2 functions in the host immune response to gram-negative bacteria. In contrast, we find that the Drosophila TNFR-associated factor (Traf) family member Traf2 is dispensable in resistance to gram-negative bacterial infection. Taken together, our genetic data identify DIAP2 as an essential component of the Imd signaling cascade, protecting the organism from infiltrating microbes.  相似文献   

16.
17.
18.
Macrophages are innate immune cells that play key roles in regulation of the immune response and in tissue injury and repair. In response to specific innate immune stimuli, macrophages may exhibit signs of endoplasmic reticulum (ER) stress and progress to apoptosis. Factors that regulate macrophage survival under these conditions are poorly understood. In this study, we identified B cell adapter protein (BCAP), a p85 PI3K-binding adapter protein, in promoting survival in response to the combined challenge of LPS and ER stress. BCAP was unique among nine PI3K adapter proteins in being induced >10-fold in response to LPS. LPS-stimulated macrophages incubated with thapsigargin, a sarcoplasmic/endoplasmic reticulum calcium ATPase inhibitor that induces ER stress, underwent caspase-3 activation and apoptosis. Macrophages from BCAP(-/-) mice exhibited increased apoptosis in response to these stimuli. BCAP-deficient macrophages demonstrated decreased activation of Akt, but not ERK, and, unlike BCAP-deficient B cells, expressed normal amounts of the NF-κB subunits, c-Rel and RelA. Retroviral transduction of BCAP-deficient macrophages with wild-type BCAP, but not a Y4F BCAP mutant defective in binding the SH2 domain of p85 PI3K, reversed the proapoptotic phenotype observed in BCAP-deficient macrophages. We conclude that BCAP is a nonredundant PI3K adapter protein in macrophages that is required for maximal cell survival in response to ER stress. We suggest that as macrophages engage their pathogenic targets, innate immune receptors trigger increased expression of BCAP, which endows them with the capacity to withstand further challenges from ongoing cellular insults, such as ER stress.  相似文献   

19.
Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host''s physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse''s resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm Apo) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm Apo adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm Apo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse''s PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a novel finding, which is the existence of a positive correlation between tsetse''s larval microbiome and the integrity of the emerging adult PM gut immune barrier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号