首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C (PKC) from bovine neutrophils was purified 1420-fold. Subcellular fractionation analysis of bovine neutrophil homogenate in the presence of EGTA indicated that more than 95% of the PKC activity was present in the soluble fraction. The purification procedure from cytosol involved sequential chromatographic steps on DE-52 cellulose, Mono Q, and phenyl-Sepharose. Whereas bovine brain PKC could be resolved into four isoenzymatic forms by chromatography on a hydroxylapatite column, bovine neutrophil PKC was eluted in a single peak, suggesting that it corresponded to a single isoform. The apparent molecular weight of bovine neutrophil PKC was 82,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By filtration on Sephadex G-150, a molecular weight of 85,000 was calculated, indicating that bovine neutrophil PKC in solution is monomeric. Its isoelectric point was 5.9 +/- 0.1. Bovine neutrophil PKC was autophosphorylated in the presence of [gamma-32P]ATP, provided that the medium was supplemented with Mg2+, Ca2+, phosphatidylserine, and diacylglycerol; phorbol myristate acetate could substitute for diacylglycerol. Autophosphorylated PKC could be cleaved by trypsin to generate two radiolabeled peptides of Mr 48,000 and 39,000. The labeled amino acids were serine and threonine. During the course of the purification procedure of bovine neutrophil PKC, a protein of Mr 23,000, which was abundant in the cytosolic fraction of the homogenate, was found to exhibit a strong propensity to PKC-dependent phosphorylation in the presence of [gamma-32P]ATP, Mg2+, Ca2+, phosphatidylserine, and diacylglycerol. This protein was recovered together with PKC in one of the two active peaks eluted from the Mono Q column at the second step of PKC purification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The substrate of the C3 exoenzyme from botulinum toxin is a protein which is particularly abundant in the cytosol of neutrophils [Stasia, M. J., Jouan, A., Bourmeyster, N., Boquet, P., & Vignais, P. V. (1991) Biochem. Biophys. Res. Commun. 180, 615-622]. Optimal conditions for the ADP-ribosylation of the C3 substrate have been established in order to follow the course of its purification from bovine neutrophil cytosol. In particular, phosphoinositides at micromolar concentrations were found to enhance the ADP-ribosylation capacity of the C3 substrate in crude neutrophil cytosol and partially purified fractions. A [32P]ADP-ribosylatable protein, migrating on SDS-PAGE with a mass of 24 kDa, was copurified with a 29-kDa protein by a series of chromatographic steps on DEAE-Sephacel, Biogel P60, and Mono Q. In the case of the C3 substrate, isoelectric focusing revealed two major labeled bands with pI values of 6.2 and 5.6; the pI of the 29-kDa protein was 4.8-5.0. On the basis of the amino acid sequence of peptides resolved after proteolytic digestion, the 24-kDa protein and the 29-kDa protein were identified respectively as rho and the GDP dissociation inhibitor (GDI), suggesting that rho and GDI copurify from bovine neutrophil cytosol in the form of a complex. The presence of a number of amino acid residues specific of rho A in the enzymatic digest originating from rho indicates that, among the rho proteins, at least rho A belongs to the GDI-rho complex.  相似文献   

3.
A 63-kDa protein, which behaves as an oxidase activating factor in bovine neutrophils, has been purified to electrophoretic homogeneity. The protein was isolated from the cytosol of resting bovine neutrophils after several steps, including ammonium sulfate precipitation and chromatography on AcA44, DE-52 cellulose, Mono Q, and Superose 12 in the presence of dithiothreitol. The oxidase activating potency of the protein was assayed with a cell-free system consisting of neutrophil membranes, GTP gamma S, arachidonic acid, and a complementary cytosolic fraction. The purification factor was 200 and the yield 3%. During the course of gel filtration on calibrated Superose 12, the 63-kDa protein eluted as a dimer. Its isoelectric point was 6.4 +/- 0.1. Antibodies raised in rabbits against the 63-kDa protein reacted with a protein of similar size in human neutrophils and in HL60 promyelocytic cells induced to differentiate into granulocytes. No immune reaction was observed in cytosol from undifferentiated HL60 cells, in extracts from bovine skeletal muscle, liver, and brain, or in cytosol prepared from neutrophils derived from a patient with an autosomal cytochrome b positive form of chronic granulomatous disease lacking the 67-kDa oxidase activating factor. Immunoblotting with the 63-kDa bovine protein antiserum demonstrated that activation of bovine neutrophil oxidase by phorbol myristate acetate induced the translocation of the 63-kDa protein from cytosol to the membrane.  相似文献   

4.
Abstract: Activation of phospholipase D (PLD) is involved in receptor-mediated signal transduction responses. Signaling from PLD to a downstream molecule(s) appears to be mediated by the PLD product phosphatidic acid (PA). A target molecule(s) of PA, however, has not yet been identified. The present study sought to define such a target molecule(s) of PA. In bovine brain cytosol, proteins with apparent molecular weights of 29,000 (p29) and 32,000 (p32) were prominently phosphorylated in the presence of PA, but not in its absence, indicating that there is a PA-regulated protein kinase (PARK) in bovine brain that phosphorylates p29 and p32. One of these substrates, p29, was purified to near homogeneity. Its partial amino acid sequence was determined and found to be identical to that of a known brain-specific 25-kDa protein (p25). The purified p29 was also readily recognized by and immunoprecipitated with an anti-p25 antibody. These results suggest that p29 is very similar to or identical with p25. Using the purified p29 as a substrate, PARK was purified to near homogeneity. The purified PARK had an apparent molecular weight of 80,000, was strongly recognized by an anti-protein kinase C (PKC)α antibody, and was activated by phosphatidylserine (PS) as well as PA. The PA- and PS-stimulated PARK activity was extremely augmented by the presence of 1 µM free Ca2+. In the presence of 1 mM EGTA, phorbol 12-myristate 13-acetate activated PARK synergistically with PA or PS. Similar results were obtained with the purified recombinant PKCα. From these results, it is suggested that the PARK activity purified might be attributed to PKCα. In p25-depleted bovine brain cytosol, which was prepared by treatment of bovine brain cytosol with the anti-p25 antibody, PA-dependent phosphorylation of p29, but not p32, was almost completely eliminated. When PKCα in bovine brain cytosol was depleted by its precipitation with the anti-PKCα antibody, neither p29 nor p32 in this PKCα-depleted cytosol was phosphorylated in the presence of PA. These results indicate that in bovine brain cytosol PA activates PKCα, which, in turn, phosphorylates p29, which may be identical with p25.  相似文献   

5.
The neutrophil activators phorbol 12-myristate 13-acetate (PMA), formyl-methionyl-leucyl-phenylalanine, serum-treated zymosan, and IgG-coated latex cause an increase in protein phosphorylation in human neutrophil cytoplasts, concomitantly with an increase in oxygen consumption. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, phosphorylation was apparent in many proteins, must abundantly in 42-, 47-, 50-, 60-, and 80-kDa proteins. In neutrophil cytoplasts from autosomal chronic granulomatous disease (CGD) patients that were stimulated with PMA, the phosphorylation of a 47-kDa protein is absent. The localization of this protein in PMA-activated control cytoplasts is mainly in the cytosol and, to a lower and more variable extent, in the membrane. After addition of purified protein kinase C to lysates of nonstimulated control cytoplasts, phosphorylation occurred at the 47-kDa level in both the cytosol and the membrane fraction. With lysates of autosomal CGD cytoplasts, in vitro phosphorylation of the 47-kDa protein was completely absent. After separation of cytoplast proteins on a sodium dodecyl sulfate-polyacrylamide gel and excision of the 47-kDa protein(s), phosphorylation of the isolated 47-kDa band was observed in the presence of purified protein kinase C. This reaction was again absent when autosomal CGD cytoplasts were used as starting material. Our studies have identified the 47-kDa protein in neutrophil cytoplasts as a true substrate for protein kinase C and indicate that the defect in phosphorylation at the 47-kDa level in autosomal CGD cytoplasts is due to a defective protein.  相似文献   

6.
In gastric chief cells, agents that activate protein kinase C (PKC) stimulate pepsinogen secretion and phosphorylation of an acidic 72-kDa protein. The isoelectric point and molecular mass of this protein are similar to those for a common PKC substrate; the MARCKS (for Myristoylated Alanine-Rich C Kinase Substrate) protein. We examined expression and phosphorylation of the MARCKS-like protein in a nearly homogeneous suspension of chief cells from guinea pig stomach. Western blotting of fractions from chief cell lysates with a specific MARCKS antibody resulted in staining of a myristoylated 72-kDa protein (pp72), associated predominantly with the membrane fraction. Using permeabilized chief cells. we examined the effect of PKC activation (with the phorbol ester PMA), in the presence of basal (100 nM) or elevated cellular calcium (1 μM), on pepsinogen secretion and phosphorylation of the 72-kDa MARCKS-like protein. Secretion was increased 2.3-, 2.6-, and 4.5-fold by incubation with 100 nM PMA, 1 μM calcium, and PMA plus calcium, respectively. A PKC inhibitor (1 μM CGP 41 251) abolished PMA-induced secretion, but did not alter calcium-induced secretion. This indicates that calcium-induced secretion is independent of PKC activation. Chief cell proteins were labeled with 32P-orthophosphate and phosphorylation of pp72 was detected by autoradiography of 2-dimensional polyacrylamide gels. In the presence of basal calcium PMA (100 nM) caused a > two-fold increase in phosphorylation of pp72. Without PMA, calcium did not alter phosphorylation of pp72. However, 1 μM calcium caused an approx. 50% attenuation of PMA-induced phosphorylation of pp72. Experiments with a MARCKS “phosphorylation/calmodulin binding domain peptide” indicated that calcium/calmodulin inhibits phosphorylation of pp72 by binding to the phosphorylation/calmodulin binding domain and not by inhibiting PKC activity. These observations support the hypothesis that, in gastric chief cells, interplay between calcium/calmodulin binding and phosphorylation of a common domain on the 72-kDa MARCKS-like protein plays a role in modulating pepsinogen secretion. J. Cell. Biochem. 64:514–523. © 1997 Wiley-Liss, Inc.  相似文献   

7.
We have shown that platelet-activating factor (PAF), a weak primary stimulus for neutrophil superoxide generation, synergistically enhances neutrophil oxidative responses to the tumor promoter phorbol myristate acetate (PMA). Since PMA is known to cause cytosol-to-membrane shift of calcium-activated, phospholipid-dependent protein kinase (protein kinase c, PKC) in human neutrophils, we investigated the role of PAF in modifying PMA-induced PKC activation/translocation. Protein kinase activity was measured as the incorporation of 32P from gamma-32P-ATP into histone H1 induced by enzyme in cytosolic and particulate fractions from sonicated human neutrophils. PAF did not alter the sharp decrease in cytosolic PKC activity induced by PMA. However, in the presence of PAF and PMA, total particulate protein kinase activity increased markedly over that detected in the presence of PMA alone (144 +/- 9 pmoles 32P/10(7)PMN/minute in cells treated with 20 ng/ml PMA compared to 267 +/- 24 pmoles 32P in cells exposed to PMA and 10(-6)M PAF). The increase in total particulate protein kinase activity was synergistic for the two stimuli, required the presence of cytochalasin B during stimulation, and occurred at PAF concentrations of 10(-7) M and above. Both PKC and calcium-, phospholipid-independent protein kinase activities in whole particulate fractions were augmented by PAF as were both activities in detergent-extractable particulate subfractions. PAF did not directly activate PKC obtained from control or PMA-treated neutrophils. However, the PKC-enhancing effect of PAF was inhibited in the absence of calcium during cellular stimulation. PAF also increased particulate protein kinase activity in cells simultaneously exposed to FMLP but the effect was additive for these stimuli. These results suggest that PAF enhances PMA-induced particulate PKC activity by a calcium-dependent mechanism. The enhancing effect of PAF may be directly involved in the mechanism whereby the phospholipid "primes" neutrophils for augmented oxidative responses to PMA.  相似文献   

8.
A protein that cross-reacted with antibody against the 90-kDa heat shock protein (HSP90) of a mouse lymphoma cell line was purified from bovine brain by three steps. Fifty milligrams of the 90-kDa protein was recovered from 350 g of the brain cortex. The sedimentation coefficient and Stokes radius of the purified protein were 6.0 s and 6.7 nm, respectively. The molecular weight was calculated to be 170,000. The molecule was composed of two identical 90-kDa subunits. A partial amino acid sequence (23 residues) of this protein was homologous (96%) to human HSP90 (the sequence of 174-196). These facts led to the identification of the 90-kDa brain protein with HSP90. In bovine tissues, the brain contained this protein at a remarkably high concentration. The brain HSP90 was separable from glucocorticoid receptor by heparin-agarose and DNA-cellulose columns. It is concluded that HSP90 is present in brain cytosol and mostly as free molecules. Immunohistochemical studies showed that the protein was localized in nerve excitable cells. It was not found in nuclei but in cytosol.  相似文献   

9.
Direct photoaffinity labeling with radioactively labeled adenosine 3'-phosphate 5'-phosphosulfate (PAPS) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography was used to identify PAPS binding proteins in a Golgi membrane preparation of bovine adrenal medulla. [3'-32P]PAPS was synthesized from adenosine 5'-phosphosulfate (APS) and [gamma-32P]ATP using APS kinase prepared from yeast and was purified by reverse-phase ion pair high performance liquid chromatography. Upon irradiation with UV light, [3'-32P]PAPS, as well as [35S]PAPS under conditions which minimized sulfotransferase-catalyzed incorporation of 35SO4 from [35S]PAPS into proteins, bound selectively to a 34-kDa protein of the Golgi membrane preparation. PAPS binding to the 34-kDa protein was strongly inhibited by the presence of 50 microM atractyloside. The 34-kDa PAPS binding protein therefore appears to be similar to the mitochondrial ATP/ADP translocator with regard to both molecular weight and inhibition by atractyloside of adenine nucleotide binding. Photoaffinity labeling will be useful in the purification and functional identification of the 34-kDa protein.  相似文献   

10.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

11.
In human neutrophils, IL-8 induces chemotaxis, the respiratory burst, and granule release, and enhances cellular adhesion, a beta(2) integrin-dependent event. IL-8 stimulates neutrophil adhesion to purified fibrinogen in a Mac-1-dependent manner. Mitogen-activated protein kinase (MAPK) activation was detected in human neutrophil lysates after treatment with IL-8 and PMA, but not the activating mAb CBR LFA 1/2. IL-8-stimulated neutrophil adhesion to fibrinogen was blocked 50% by the MAPK/extracellular signal-related kinase-activating enzyme inhibitor PD098059. Adhesion was blocked approximately 75% by inhibition of the phosphatidylinositol-3 kinase (PI3K) pathway with LY294002, supporting that activation of both MAPK and PI3K may play a role in IL-8-dependent inside-out signals that activate Mac-1. Activation of MAPK was inhibited in IL-8-stimulated cells in the presence of PI3K inhibitors LY294002 or wortmannin, supporting a model in which PI3K is upstream of MAPK. IL-8-stimulated neutrophil adhesion was inhibited 50% by bisindolylmaleimide-I, implicating protein kinase C (PKC) in the intracellular signaling from the IL-8R to Mac-1. A 74-kDa molecular mass species was detected by an activation-specific Ab to PKC when cells were stimulated with PMA or IL-8, but not a beta(2)-activating Ab. Inhibition of either MAPK or PKC resulted in partial inhibition of IL-8-stimulated polymorphonuclear neutrophil adhesion, and treatment with both inhibitors simultaneously completely abolished IL-8-stimulated adhesion to ligand. Inhibition of PI3K blocked MAPK activation, but not PKC activation, suggesting a branch point that precedes PI3K activation. These data suggest that both MAPK and PKC are activated in response to IL-8 stimulation, and that these may represent independent pathways for beta(2) integrin activation in neutrophils.  相似文献   

12.
Native cytosol requires ATP to initiate the budding of the pre-chylomicron transport vesicle from intestinal endoplasmic reticulum (ER). When FABP1 alone is used, no ATP is needed. Here, we test the hypothesis that in native cytosol FABP1 is present in a multiprotein complex that prevents FABP1 binding to the ER unless the complex is phosphorylated. We found on chromatography of native intestinal cytosol over a Sephacryl S-100 HR column that FABP1 (14 kDa) eluted in a volume suggesting a 75-kDa protein complex that contained four proteins on an anti-FABP1 antibody pulldown. The FABP1-containing column fractions were chromatographed over an anti-FABP1 antibody adsorption column. Proteins co-eluted from the column were identified as FABP1, Sar1b, Sec13, and small VCP/p97-interactive protein by immunoblot, LC-MS/MS, and MALDI-TOF. The four proteins of the complex had a total mass of 77 kDa and migrated on native PAGE at 75 kDa. When the complex was incubated with intestinal ER, there was no increase in FABP1-ER binding. However, when the complex member Sar1b was phosphorylated by PKCζ and ATP, the complex completely disassembled into its component proteins that migrated at their monomer molecular weight on native PAGE. FABP1, freed from the complex, was now able to bind to intestinal ER and generate the pre-chylomicron transport vesicle (PCTV). No increase in ER binding or PCTV generation was observed in the absence of PKCζ or ATP. We conclude that phosphorylation of Sar1b disrupts the FABP1-containing four-membered 75-kDa protein complex in cytosol enabling it to bind to the ER and generate PCTV.  相似文献   

13.
This paper describes a simple and direct procedure for assaying Ca(2+)-dependent protein kinase C (PKC) activity in membrane fractions isolated from purified murine B lymphocytes (B cells) treated with phorbol 12-myristate 13-acetate (PMA). The results indicate that membrane-bound PKC in B cells, treated with PMA, can be measured directly in the presence of 0.5% Brij 58 by assaying the transfer of 32P from [gamma-32P]ATP to histone type III-S. This method obviates the need for partial purification of the protein kinase by ion-exchange chromatography prior to assaying PKC activity. The properties of membrane-associated PKC activity in B cells have been characterized, and the kinetics of PMA-induced translocation of PKC in cultured murine B cells, the rat glial tumor clone C6, and primary neonatal osteoblastic cells have been defined by this direct assay. The results obtained with B cells and the other cell lines indicate that this direct assay procedure could be useful for studies on the factors controlling PKC translocation in a variety of cultured mammalian cells.  相似文献   

14.
A bovine neutrophil protein termed p23 because of an apparent molecular mass of 23 kDa in SDS-PAGE is present in large amounts both in a soluble form in the cytosolic fraction of bovine neutrophil homogenates and associated to the cytoskeleton. P23 is accompanied during the first steps of the purification procedure by a smaller size protein termed p7 on the basis of a rate of migration in SDS-PAGE corresponding to a 7-kDa protein [Stasia, M. J., Dianoux, A. C., & Vignais, P. V. (1989) Biochemistry 28, 9659-9667]. The two proteins, p23 and p7, have been purified to homogeneity by an improved procedure consisting of two chromatographic steps. The electrospray mass spectrometry technique applied to p23 and p7 indicated molecular masses close to 17 and 10 kDa, respectively, significantly different from the masses derived by SDS-PAGE. Bovine neutrophil p23 and p7 presented large primary structure homologies with two human proteins, MRP14 and MRP8, which are expressed in large amounts in macrophages under conditions of chronic inflammation. In addition, p23 and p7 cross-reacted with monoclonal antibodies specific of MRP14 and MRP8. Bovine p23 and p7 bound Ca2+, and their amino acid sequences contained two Ca(2+)-binding domains per protein, largely identical to those of human MRP14 and MRP8. Bovine p23 and p7 associated together to form a heterodimeric complex, which largely escaped attack by trypsin, whereas the isolated p23 and p7 components were readily digested. These features are typical of Ca(2+)-binding proteins belonging to the S100 family.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cytoplasmic Ca2+ is a major regulator of exocytosis in secretory cells; however, the Ca(2+)-dependent mechanisms that trigger secretion have not been elucidated. Protein kinase C (PKC) has been proposed to be an important Ca(2+)-dependent component of this regulation; however, the effects of this enzyme on the exocytotic apparatus have not been identified. We developed a PKC-deficient, semi-intact PC12 cell system in which direct stimulatory effects of purified PKC on Ca(2+)-dependent norepinephrine secretion were studied. The reconstitution of optimal Ca(2+)-activated norepinephrine secretion by semi-intact PC12 cells required the addition of MgATP and cytosolic proteins. PKC-deficient cytosol exhibited reduced reconstituting activity that was fully restored by the addition of purified PKC. The restoration of Ca(2+)-dependent norepinephrine secretion by PKC required the presence of other proteins in the cytosol, in particular, a high molecular weight protein. The high molecular weight protein was identified as p145, a recently characterized 145-kDa brain protein. The addition of PKC enhanced phosphorylation of p145 under conditions of fully reconstituted Ca(2+)-activated norepinephrine secretion. The results indicate that 1) PKC is neither necessary nor sufficient for Ca(2+)-activated secretion, whereas other cytosolic proteins are required; and 2) the stimulation of Ca(2+)-activated secretion by PKC is dependent upon cytosolic proteins such as p145 and may be largely mediated through the phosphorylation of p145.  相似文献   

16.
To clarify the intracellular signalling mechanisms of atrial natriuretic factor (ANF), we studied its effect on protein phosphorylation in plasma membranes of bovine adrenal cortical cells. ANF (1×10–7 M) inhibited phosphorylation of the 78-kDa protein kinase C (PKC) and a 240-kDa protein in specific manner. In parallel experiments, cGMP (0.5 mM) inhibited phosphorylation of only the 78-kDa PKC but it did not affect phosphorylation of the 240-kDa protein. Phosphorylation of the 78-kDa PKC was enhanced in a Ca2+-/phospholipid-dependent manner. However, after prolonged preincubation of plasma membranes with Ca2+ (0.5 mM), the incorporation of32P-radioactivity rapidly decreased in the 78-kDa PKC and subsequently increased in the 45- and 48-kDa protein bands due to Ca2+-dependent proteolytic degradation of 78-kDa PKC. Polyclonal antibodies against brain PCK were used to immunoblot and immunoprecipitate the 78-kDa PKC. Preincubation of plasma membranes with Ca2+ for varying times, followed by immunoblotting revealed a gradual loss of the immunoreactive 78-kDa PKC band in a time-dependent manner. Immunoprecipitation of phosphorylated 78-kDa PKC in plasma membranes showed that its phosphorylation was significantly inhibited in the presence of ANF as compared to control membranes, phosphorylated in the absence of ANF. The results in this present study document a new signal transduction mechanism of ANF at molecular level which possibly involves dephosphorylation of the 78-kDa PKC and a 240-kDa protein in a cGMP-dependent and-independent manner in bovine adrenal glomerulosa cell membranes. (Mol Cell Biochem141: 103–111, 1994)  相似文献   

17.
The Ras-related protein, Rap1B, has previously been shown to serve as a PKA substrate in vitro and to be phosphorylated by cAMP elevating agents in human platelets. We have purified a Rap1 protein that serves as a PKA substrate from human neutrophils, and we now identify this protein as Rap1A. A 23-kDa protein that co-migrated with recombinant Rap1A was phosphorylated in electroporated human neutrophils upon stimulation by cAMP in the presence of [gamma-32P]ATP. This protein could be immunoprecipitated by the Rap1A/B-specific antibody, R61. The 23-kDa phosphoprotein was monitored during the purification of Rap1 from neutrophil membrane extracts and was shown to copurify with Rap1 during the DEAE Sephacel, heptylamine Sepharose, and MonoQ chromatography steps utilized. The purified protein was phosphorylated to an extent of 1 mol phosphate/mol GTP gamma S bound. This protein was identified as Rap1A by: 1) amino acid sequence analysis; and 2) immunoblotting with a Rap1A-specific antibody. The amino acid phosphorylated on Rap1A by PKA was a serine residue. The site of phosphorylation was indicated by carboxypeptidase digestion and confirmed using a mutant recombinant Rap1A lacking the relevant serine (serine-180). Rap1A, not Rap1B, appears to be the major 23-kDa PKA substrate in human neutrophils. It is possible that Rap1A plays a role in human neutrophils in mediating the inhibitory effects of cAMP-elevating agents upon chemoattractant-stimulated cell activation.  相似文献   

18.
Fractionation of rat liver cytosol on DEAE-cellulose resolved two S6 kinases eluting at 25 mM KCl (peak I) and 100 mM KCl (peak II). The apparent molecular weights of the peak I and peak II kinases are 26,300 and 67,000, respectively. The peak II kinase was further purified and characterized. Incubation of the kinase with [gamma-32P] ATP and Mg2+ resulted in the incorporation of 32P predominantly into a 67-kDa band. Optimal activity of the kinase was observed in the presence of 5 mM Mg2+ and in the pH range of 8.0-8.5. The Km for ATP and 40S subunit were 7.3 microM and 1.5 microM, respectively. The Mg(2+)-stimulated kinase activity was inhibited by various divalent metals, NaF, and polyamines. The properties of the peak II S6 kinase are very similar or identical to the previously described mitogen-activated S6 protein kinase and may represent the nonactivated form of this enzyme.  相似文献   

19.
In bovine aortic endothelial cells, ATP (10-100 microM) and bradykinin (0.1-1.0 microM) enhanced the phosphorylation of two major protein substrates with apparent molecular masses of 95 and 28 kDa. The action of ATP involved P2y purinoceptors. The kinetics were distinct for the two phosphopeptides. The phosphorylation of the 95-kDa protein was rapid (within 30 s) but transient (maintained for only 2 min). This time course agrees with that observed for the increase of the cytosolic Ca2+ level induced by ATP in these cells. Ionophore A23187 (greater than or equal to 100 nM) induced this phosphorylation for a longer period (5-10 min), whereas phorbol 12-myristate 13-acetate (PMA) was completely inactive. The enhancement of the 28-kDa protein phosphorylation was detectable after a 5-min lag and was maintained for at least 20 min. PMA (50 nM) stimulated weakly the phosphorylation of the 28-kDa protein, whereas A23187 (100-300 nM) was even more effective than ATP and bradykinin. The 95-kDa phosphoprotein seems to be related to a 100-kDa substrate of calmodulin-dependent protein kinase III recently identified as elongation factor-2. The 28-kDa protein, which was resolved as three variants in bidimensional gel electrophoresis, appears very similar to a slightly heavier phosphoprotein from thrombin-stimulated human platelets. In addition, bidimensional electrophoresis allowed the detection of at least 10 substrates (from 18 to 46 kDa) whose phosphorylation was enhanced equally well by ATP, bradykinin, and A23187 and only partially by PMA. In conclusion, protein phosphorylation induced by ATP and bradykinin in aortic endothelial cells seems to be catalyzed mostly by Ca2+-dependent kinases, distinct from protein kinase C.  相似文献   

20.
A fatty-acid-binding protein (FABP) from the cytosol of bovine brain was purified by Sephadex G-75 filtration and electrofocusing. The purified FABP behaved as an anionic protein with an apparent molecular mass of 14.7 kDa; its complete amino acid sequence was determined and microheterogeneity was observed. Sequence comparison with other FABPs of known sequence and the observed microheterogeneity demonstrated the presence in brain of several homologous FABPs closely related to heart FABP and bovine mammary-derived growth inhibitor (MDGI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号