首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have used potentiometric titrations to measure the pK values of the ionizable groups of proteins in alanine pentapeptides with appropriately blocked termini. These pentapeptides provide an improved model for the pK values of the ionizable groups in proteins. Our pK values determined in 0.1 M KCl at 25 degrees C are: 3.67+/-0.03 (alpha-carboxyl), 3.67+/-0.04 (Asp), 4.25+/-0.05 (Glu), 6.54+/-0.04 (His), 8.00+/-0.03 (alpha-amino), 8.55+/-0.03 (Cys), 9.84+/-0.11 (Tyr), and 10.40+/-0.08 (Lys). The pK values of some groups differ from the Nozaki and Tanford (N & T) pK values often used in the literature: Asp (3.67 this work vs. 4.0 N & T); His (6.54 this work vs. 6.3 N & T); alpha-amino (8.00 this work vs. 7.5 N & T); Cys (8.55 this work vs. 9.5 N & T); and Tyr (9.84 this work vs. 9.6 N & T). Our pK values will be useful to those who study pK perturbations in folded and unfolded proteins, and to those who use theory to gain a better understanding of the factors that determine the pK values of the ionizable groups of proteins.  相似文献   

2.
3.
The phenolic group of active site residue Tyr-248 in carboxypeptidase A has a pKa value of 10.06, as determined from the pH dependence of its rate of nitration by tetranitromethane. The decrease in enzyme activity (kcat/Km) in alkaline solution, characterized by a pKa value of approximately 9.0 (for cobalt carboxypeptidase A), is associated with the protonation state of an imidazole ligand of the active-site metal ion, as indicated by a selective pH dependence of the 1H NMR spectrum of the enzyme. Inhibition of the cobalt-substituted enzyme by 2-(1-carboxy-2-phenylethyl)phenol and its 4,6-dichloro- and 4-phenylazo-derivatives confirms that the decrease in enzyme activity (kcat/Km) in acidic solution, characterized by a pKa value of 5.8, is due to the protonation state of a water molecule bound to the active-site metal ion in the absence of substrate. Changes in the coordination number of the active-site metal ion are seen in its visible absorption spectrum as a consequence of binding of the phenolic inhibitors. Conventional concepts regarding the mechanisms of the enzyme are brought into question.  相似文献   

4.
The rate of reaction between alpha-amino groups and cyanic acid was followed at 26 degrees and ionic strength 0.2 M as a function of pH of human hemoglobin Ao solutions to determine the pK and the pH-independent second order rate constant, kappa, for these groups in the alpha and beta chains. At a given point in time, the extent of the reaction was determined by employing the Beckmann Sequencer as a quantitative tool in which the yields of leucine and histidine in the second Edman degradation cycle were used to define the rates of reaction of the alpha and beta chains, respectively. From these results, the individual were evaluated (Garner, M.H., Garner, W.H., and Gurd, F. R.N. (1973) J. Biol. Chem. 248, 5451-5455). Values for pK for the alpha and beta chains were, respectively, 6.74 and 6.93 for cyanoferrihemoglobin, 6.95 and 7.05 for carboxyhemoglobin, and 7.79 and 6.84 for deoxyhemoglobin. Values for kappa, M- minus 1 S-minus 1, for the alpha and beta chains were, respectively, 12.5 and 17 for cyanoferrihemoglobin, 12 and 18 for carboxyhemoglobin, and 91 and 24 for deoxyhemoglobin. Limits of significance were estimated for both variables in each case. The pK results for valine 1alpha agree well with the value obtained by Hill and Davis (1967) J. Biol. Chem. 242, 2005-2012) for carboxyhemoglobin and with that of Kilmartin and Rossi-Bernardi ((1971) Biochem. J. 124, 31-45) for deoxyhemoglobin. Values obtained for sperm whale myoglobin were 7.77 for pK and 7.4 for kappa. The results are useful for the interpretation of the allosteric interactions of hemoglobin with hydrogen ions, with CO2, and with phosphate.  相似文献   

5.
In the assay of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in vitro, the concentration of CO2, the substrate of the enzyme, has been calculated from the amount of sodium bicarbonate added to the assay mixture with a dissociation constant of carbonic acid in pure water, 6.35 to 6.37. However, Rubisco is generally assayed at ionic strength of 0.1 to 0.2 M, where the dissociation constant decreases up to 6.06. The decrease of this level of the constant reduces the calculated CO2 concentration in the assay mixture to about half and accordingly the Kms of Rubisco for CO2 reported so far are not correct. The present report presents a nomograph and an equation, from which dissociation constants of carbonic acid in the presence of various concentrations of salts can be easily calculated.  相似文献   

6.
Nelson KJ  Parsonage D  Hall A  Karplus PA  Poole LB 《Biochemistry》2008,47(48):12860-12868
Salmonella typhimurium AhpC is a founding member of the peroxiredoxin family, a ubiquitous group of cysteine-based peroxidases with high reactivity toward hydrogen peroxide, organic hydroperoxides, and peroxynitrite. For all of the peroxiredoxins, the catalytic cysteine, referred to as the peroxidatic cysteine (C(P)), acts as a nucleophile in attacking the peroxide substrate, forming a cysteine sulfenic acid at the active site. Because thiolates are far stronger nucleophiles than thiol groups, it is generally accepted that cysteine-based peroxidases should exhibit pK(a) values lower than an unperturbed value of 8.3-8.5. In this investigation, several independent approaches were used to assess the pK(a) of the two cysteinyl residues of AhpC. Methods using two different iodoacetamide derivatives yielded unperturbed pK(a) values (7.9-8.7) for both cysteines, apparently due to reactivity with the wrong conformation of C(P) (i.e., locally unfolded and flipped out of the active site), as supported by X-ray crystallographic analyses. A functional pK(a) of 5.94 +/- 0.10 presumably reflecting the titration of C(P) within the fully folded active site was obtained by measuring AhpC competition with horseradish peroxidase for hydrogen peroxide; this value is quite similar to that obtained by analyzing the pH dependence of the epsilon(240) of wild-type AhpC (5.84 +/- 0.02) and similar to those obtained for two typical 2-cysteine peroxiredoxins from Saccharomyces cerevisiae (5.4 and 6.0). Thus, the pK(a) value of AhpC balances the need for a deprotonated thiol (at pH 7, approximately 90% of the C(P) would be deprotonated) with the fact that thiolates with higher pK(a) values are stronger nucleophiles.  相似文献   

7.
Ionisation equilibria in proteins are influenced by conformational flexibility, which can in principle be accounted for by molecular dynamics simulation. One problem in this method is the bias arising from the fixed protonation state during the simulation. Its effect is mostly exhibited when the ionisation behaviour of the titratable groups is extrapolated to pH regions where the predetermined protonation state of the protein may not be statistically relevant, leading to conformational sampling that is not representative of the true state. In this work we consider a simple approach which can essentially reduce this problem. Three molecular dynamics structure sets are generated, each with a different protonation state of the protein molecule expected to be relevant at three pH regions, and pK calculations from the three sets are combined to predict pK over the entire pH range of interest. This multiple pH molecular dynamics approach was tested on the GCN4 leucine zipper, a protein for which a full data set of experimental data is available. The pK values were predicted with a mean deviation from the experimental data of 0.29 pH units, and with a precision of 0.13 pH units, evaluated on the basis of equivalent sites in the dimeric GCN4 leucine zipper.  相似文献   

8.
9.
The rates of the trinitrophenylation of the amino groups of ribonuclease A (RNAse) with the specific reagent trinitrobenzene sulfonic acid have been studied at 27°C, between pH 7.0 and 9.9. From the variation of the velocity constants with pH it has been shown that the reaction is biphasic in the sense that for each amino group two pKs have been found: one (pK = 7.3–7.52) in the range of pH between 7.0 and 8.3 and the other (pK = 9.28–9.69) in the pH range 8.5–9.9. It is pointed out that when the experimental conditions approached one another, there was agreement between the pK values obtained from titrimetric and kinetic studies. Evidence is presented from the literature concerning the validity of the pK value near 7.5 for the ε-amino groups in RNAse. The studies were repeated with performic acid oxidized RNAse and the 10 ε-amino groups were found to be monophasic with pK values between 8.01 and 8.10. The α-amino group of the N-terminal lysine was biphasic with a pK of 7.26 (pH range 7–8) and 8.13 (pH range 8.2–9.5).  相似文献   

10.
11.
12.
We tabulated 541 measured pK values reported in the literature for the Asp, Glu, His, Cys, Tyr, and Lys side chains, and the C and N termini of 78 folded proteins. The majority of these values are for the Asp, Glu, and His side chains. The average pK values are Asp 3.5 ± 1.2 (139); Glu 4.2 ± 0.9 (153); His 6.6 ± 1.0 (131); Cys 6.8 ± 2.7 (25); Tyr 10.3 ± 1.2 (20); Lys 10.5 ± 1.1 (35); C‐terminus 3.3 ± 0.8 (22) and N‐terminus 7.7 ± 0.5 (16). We compare these results with the measured pK values of these groups in alanine pentapeptides, and comment on our overall findings.  相似文献   

13.
14.
He Y  Xu J  Pan XM 《Proteins》2007,69(1):75-82
We propose a simple model for the calculation of pK(a) values of ionizable residues in proteins. It is based on the premise that the pK(a) shift of ionizable residues is linearly correlated to the interaction between a particular residue and the local environment created by the surrounding residues. Despite its simplicity, the model displays good prediction performance. Under the sixfold cross test prediction over a data set of 405 experimental pK(a) values in 73 protein chains with known structures, the root-mean-square deviation (RMSD) between the experimental and calculated pK(a) was found to be 0.77. The accuracy of this model increases with increasing size of the data set: the RMSD is 0.609 for glutamate (the largest data set with 141 sites) and approximately 1 pH unit for lysine, with a data set containing 45 sites.  相似文献   

15.
Considerable effort has been devoted to the development of theoretical electrostatic methods to predict the pK values of ionizable residues in proteins. However, predictions appear often to be still at the qualitative or semi-quantitative level. We believe that, with the increasing number experimentally available pK values for proteins of known structure, an alternative approach becomes feasible: the empirical parametrization of the experimental protein pK database. Of course, in the long term, this empirical approach is no substitute for rigorous electrostatic analysis but, in the short term, it may prove to have useful predictive power and it may help to pinpoint the main structural determinants of pK values in proteins. Here we demonstrate the feasibility of the parametrization approach by fitting (using a genetic algorithm as fitting tool) the database for carboxylic acid pK values in proteins on the basis of an empirical equation that takes into account the two following kinds of effects: (1) long-range charge-charge interactions; (2) interactions of the given carboxylic acid group with its environment in the protein, which are described in terms of contributions from the different kind of atoms present in the protein (atomic contributions).  相似文献   

16.
Electrostatic calculations of pK(a-values) are reported along a 400 ps molecular dynamics trajectory of bacteriorhodopsin. The sensitivity of calculated pK(a) values to a number of structural factors and factors related to the modelling of the electrostatics are also studied. The results are very sensitive to the choice of internal dielectric constant of the protein (in the interval 2-4). Moreover it is important to include internal water molecules and to average over a long enough portion ( approximately 100 ps) of an equilibrium molecular dynamics trajectory. The internal waters are necessary to get an ion-counter ion complex with the Schiff base and Arg 82 protonated and the aspartic groups (85 and 212) deprotonated. The fluctuations along the MD-trajectory do not change the protonation state of internal residues at neutral pH. However, at other pH values the averaging along a trajectory maybe crucial to get correct protonation states. A relationship is found between the arginine group 82, the aspartic group 85 and the glutamate group 204. Glu 204 is protonated in the ground state but the pK(a) value decreases towards deprotonation when the chromophore isomerizes into the cis state.  相似文献   

17.
The primary goal of this study was to gain a better understanding of the effect of environment and ionic strength on the pK values of histidine residues in proteins. The salt-dependence of pK values for two histidine residues in ribonuclease Sa (RNase Sa) (pI=3.5) and a variant in which five acidic amino acids have been changed to lysine (5K) (pI=10.2) was measured and compared to pK values of model histidine-containing peptides. The pK of His53 is elevated by two pH units (pK=8.61) in RNase Sa and by nearly one pH unit (pK=7.39) in 5K at low salt relative to the pK of histidine in the model peptides (pK=6.6). The pK for His53 remains elevated in 1.5M NaCl (pK=7.89). The elevated pK for His53 is a result of screenable electrostatic interactions, particularly with Glu74, and a non-screenable hydrogen bond interaction with water. The pK of His85 in RNase Sa and 5K is slightly below the model pK at low salt and merges with this value at 1.5M NaCl. The pK of His85 reflects mainly effects of long-range Coulombic interactions that are screenable by salt. The tautomeric states of the neutral histidine residues are changed by charge reversal. The histidine pK values in RNase Sa are always higher than the pK values in the 5K variant. These results emphasize that the net charge of the protein influences the pK values of the histidine residues. Structure-based pK calculations capture the salt-dependence relatively well but are unable to predict absolute histidine pK values.  相似文献   

18.
19.
Microchip capillary electrophoresis (CE), coupled with indirect fluorescence detection was investigated for estimating the pK(a) values of non-fluorescent compounds. The CE method is based on the differences in electrophoretic mobility of the analyte as a function of the pH of the running buffer. Nine compounds were tested, including several of pharmaceutical importance, with pK(a) values from 10.3 to 4.6. All buffers contained 5-TAMRA as the fluorescent probe for indirect detection. Calculated pK(a) values agreed well with literature values obtained by traditional methods, differing not more than 0.2 from the literature value. The current work on single lane chips demonstrates the principle of microchip CE with indirect detection as a viable method for estimating pK(a) values. However, increased throughput will be required using a multilane chip to enable the approach to be used practically.  相似文献   

20.
Blood coagulation is triggered when the serine protease factor VIIa (fVIIa) binds to cell surface tissue factor (TF) to form the active enzyme-cofactor complex. TF binding to fVIIa allosterically augments the enzymatic activity of fVIIa toward macromolecular substrates and small peptidyl substrates. The mechanism of this enhancement remains unclear. Our previous studies have indicated that soluble TF (sTF; residues 1-219) alters the pH dependence of fVIIa amidolytic activity (Neuenschwander et al. (1993) Thromb. Haemostasis 70, 970), indicating an effect of TF on critical ionizations within the fVIIa active center. The pKa values and identities of these ionizable groups are unknown. To gain additional insight into this effect, we have performed a detailed study of the pH dependence of fVIIa amidolytic activity. Kinetic constants of Chromozym t-PA (MeSO(2)-D-Phe-Gly-Arg-pNA) hydrolysis at various pH values were determined for fVIIa alone and in complex with sTF. The pH dependence of both enzymes was adequately represented using a diprotic model. For fVIIa alone, two ionizations were observed in the free enzyme (pK(E1) = 7.46 and pK(E2) = 8.67), with at least a single ionization apparent in the Michaelis complex (pK(ES1) similar 7.62). For the fVIIa-TF complex, the pK(a) of one of the two important ionizations in the free enzyme was shifted to a more basic value (pK(E1) = 7.57 and pK(E2) = 9.27), and the ionization in the Michaelis complex was possibly shifted to a more acidic pH (pK(ES1) = 6.93). When these results are compared to those obtained for other well-studied serine proteases, K(E1) and K(ES1) are presumed to represent the ionization of the overall catalytic triad in the absence and presence of substrate, respectively, while K(E2) is presumed to represent ionization of the alpha-amino group of Ile(153). Taken together, these results would suggest that sTF binding to fVIIa alters the chemical environment of the fVIIa active site by protecting Ile(153) from deprotonation in the free enzyme while deprotecting the catalytic triad as a whole when in the Michaelis complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号