首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the G-proteins present in the pre- and post-synaptic plasma membranes and in the synaptic vesicles of cholinergic nerve terminals purified from the Torpedo electric organ was investigated. In pre- and post-synaptic plasma membranes, Bordetella pertussis toxin, known to catalyze the ADP-ribosylation of the alpha-subunit of several G-proteins, labels two substrates at 41 and 39 kDa. The 39 kDa subunit detected by ADP-ribosylation in the synaptic plasma membrane fractions was immunologically similar to the Go alpha-subunit purified from calf brain. In contrast to bovine chromaffin cell granules, no G-protein could be detected in Torpedo synaptic vesicles either by ADP-ribosylation or by immunoblotting.  相似文献   

2.
《The Journal of cell biology》1990,111(5):2041-2052
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral membrane protein of synaptic vesicles, with half-maximal inhibition seen between 10(-8) and 10(-7) M synaptophysin. Because of its affinity for synaptophysin, we named the 36-kD synaptic vesicle-binding protein physophilin (psi nu sigma alpha, greek = bubble, vesicle; psi iota lambda os, greek = friend). Physophilin exhibits an isoelectric point of approximately 7.8, a Stokes radius of 6.6 nm, and an apparent sedimentation coefficient of 5.6 S, pointing to an oligomeric structure of this protein. It is present in synaptic plasma membranes prepared from synaptosomes but not in synaptic vesicles. In solubilization experiments, physophilin behaves as an integral membrane protein. Thus, a putative synaptic plasma membrane protein exhibits a specific interaction with one of the major membrane proteins of synaptic vesicles. This interaction may play a role in docking and/or fusion of synaptic vesicles to the presynaptic plasma membrane.  相似文献   

3.
The final step in exocytosis is the fusion of synaptic vesicle membrane with the synaptosomal plasma membrane, leading to the release of the neurotransmitters. We have reconstituted this fusion event in vitro, using isolated synaptic vesicles and synaptosomal plasma membranes from the bovine brain. The membranes of synaptic vesicles were loaded with the lipid--soluble fluorescent probe octadecylrhodamine B at the concentration that resulted in self-quenching of its fluorescence. The vesicles were then incubated with synaptosomal plasma membranes at 37 degrees C and fusion was measured through the dilution-dependent de-quenching of the fluorescence of the probe. Synaptic vesicles by themselves did not fused with plasma membrane, only addition of ATP induced the fusion. W-7 and trifluoroperasine, the drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the ATP-induced fusion synaptic vesicles and synaptosomal plasma membranes. Our results indicate that the membrane fusion in the nerve terminals during exocytosis may be under direct control of calmodulin-dependent protein phosphorylation.  相似文献   

4.
Subjecting brain homogenates to differential speed and sucrose density gradient centrifugation resulted in the isolation of a membrane fraction from the post-mitochondrial supernatant with properties and marker enzyme profiles typical of plasma membranes. This membrane fraction is compared with the microsomes and the synaptic plasma membranes isolated from synaptosomes. Like the synaptic plasma membranes, membranes obtained from the post-mitochondrial supernatant were enriched five-fold in 5′-nucleotidase activity. However, the latter membranes were lower in (Na+, K+)-ATPase activity and higher in NADPH-cytochrome C reductase activity as compared to the synaptic plasma membranes. The post-mitochondrial plasma membranes were also different from the microsomes in their respective marker enzyme activities. Electron microscopic examination indicated largely membranous vesicles for both plasma membrane fractions with little contamination by myelin, mitochondra and intact synaptosomes. The phospholipid and acyl group profiles of the two plasma membrane fractions were surprisingly similar, but they were different from the characteristic profiles of myelin and mitochondria. It is concluded that plasma membranes isolated from the post-mitochondrial supernatant fraction are derived largely from neuronal and glial soma and are thus designated the somal plasma membrane fraction.  相似文献   

5.
The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+-dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca2+ influx remain obscure. Sodium dodecyl sulfate (SDS)-resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [3H]GABA release and Ca2+-dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca2+ (30-300 microM) but not Sr2+ (1 mM); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v-SNARE/t-SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N-ethylmaleimide-sensitive fusion protein (NSF) was inhibited with N-ethylmaleimide or adenosine 5'-O-(3-thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca2+ triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.  相似文献   

6.
An in vitro model to study the molecular control of binding of highly purified synaptic vesicles to presynaptic plasma membranes has been developed. Presynaptic plasma membranes were immobilized by dotting onto nitrocellulose, and binding of iodinated synaptic vesicle membranes was studied under varying experimental conditions. Synaptic vesicles bind to presynaptic plasma membranes in the presence of Ca2+ and ATP. Binding is reduced in the presence of EGTA and abolished by the calmodulin antagonist trifluoperazine. Vesicle binding is stimulated 5-fold after incubation--prior to dotting--of presynaptic plasma membranes with ATP in the presence of the phorbol-ester 12-O-tetradecanoylphorbol-13-acetate (1 microM) and 2.5-fold after preincubation with Ca2+ (50 microM). Pretreatment of plasma membranes with alkaline phosphatase strongly reduces vesicle binding. Microsomes prepared from bovine liver did not bind to presynaptic plasma membranes. Our results suggest that activation of protein kinase C and Ca2+ stimulate binding of synaptic vesicles to the presynaptic membrane. In the intact nerve terminal this interaction may represent an initial step in synaptic vesicle exocytosis.  相似文献   

7.
Rabbit antisera to highly purified synaptic vesicles from the electric organ of Narcine brasiliensis, an electric ray, reveal a unique population of synaptic vesicle antigens in addition to a population shared with other electric organ membranes. Synaptic vesicle antigens were detected by binding successively rabbit antivesicle serum and radioactive goat anti-rabbit serum. To remove antibodies directed against antigens common to synaptic vesicles and other electric organ fractions, the antivesicle serum was extensively preadsorbed against an electric organ membrane fraction that was essentially free of synaptic vesicles. The adsorbed serum retained 40% of its ability to bind to synaptic vesicles, suggesting that about half of the antigenic determinants are unique. Vesicle antigens were quantified with a radioimmunoassay (RIA) that utilized precipitation of antibody-antigen complexes with Staphylococcus aureus cells. By this assay, the vesicles, detected by their acetylcholine (ACh) content and the antigens detected by the RIA, have the same buoyant density after isopycnic centrifugation of crude membrane fractions on sucrose and glycerol density gradients. The ratio of ACh to antigenicity was constant across the vesicle peaks and was close to that observed for vesicles purified to homogeneity. Even though the vesicles make up only approximately 0.5% of the material in the original homogenate, the ratio of acetylcholine to vesicle antigenicity could still be measured and also was indistinguishable from that of pure vesicles. We conclude that synaptic vesicles contain unique antigenic determinants not present to any measurable extent in other fractions of the electric organ. Consequently, it is possible to raise a synaptic vesicle- specific antiserum that allows vesicles to be detected and quantified. These findings are consistent with earlier immunohistochemical observations of specific antibody binding to motor nerve terminals.  相似文献   

8.
Fusion between synaptic vesicles and plasma membranes isolated from rat brain synaptosomes is regarded as a model of neurosecretion. The main aim of current study is to investigate whether the synaptosomal soluble proteins are essential members of Ca(2+)-triggered fusion examined in this system. Fusion experiments were performed using fluorescent dye octadecylrhodamine B, which was incorporated into synaptic vesicle membranes at self-quenching concentration. The fusion of synaptic vesicles, containing marker octadecylrhodamine B, with plasma membranes was detected by dequenching of the probe fluorescence. Membrane fusion was not found in Ca(2+)-supplemented buffer solution, but was initiated by the addition of the synaptosomal soluble proteins. When soluble proteins were treated with trypsin, they lost completely the fusion activity. These experiments confirmed that soluble proteins of synaptosomes are sensitive to Ca(2+) signal and essential for membrane fusion. The experiments, in which members of fusion process were treated with monoclonal antibodies raised against synaptotagmin and synaptobrevin, have shown that antibodies only partially inhibited fusion of synaptic vesicles and plasma membranes in vitro. These results indicate that other additional component(s), which may or may not be related to synaptobrevin or synaptotagmin, mediate this process. It can be assumed that fusion of synaptic vesicles with plasma membranes in vitro depends upon the complex interaction of a large number of protein factors.  相似文献   

9.
Using the technique of electrophoretic light scattering, we have measured the electrophoretic mobilities of synaptic vesicles and synaptosomal plasma membranes isolated from guinea-pig cerebral cortex. The electrophoretic mobility of synaptic vesicles is slightly greater than that of synaptosomal plasma membranes. Ca+2 and Mg+2 reduced the mobility of both species to the same extent at physiologically relevant concentrations (0-1 mM) and near-physiologic ionic strength. The extent of the reduction was not large (approximately 6% for synaptic vesicles in the presence of 100 mM KCl) at 1 mM divalent cation concentrations. At concentrations of approximately 2 mM and higher, Ca+2 reduced the mobility of synaptic vesicles more than did Mg/2. A similar but much smaller effect was observed in the case of synaptosomal plasma membranes. The addition of 1 mM Mg+2-ATP had no effect upon synaptic vesicle mobility either in the presence or absence of the ionophores nigericin or valinomycin. These data, together with earlier work (Siegel et al., 1978, Biophys. J. 22:341-346), demonstrate that substantial reduction of the average electrostatic surface charge density is not the most important role of divalent cations in promoting close approach of secretory granules and secretory cell membranes, and that it is certainly not the Ca+2-specific step in exocytosis.  相似文献   

10.
Ca2+-sensitive Mg2+-dependent ATP phosphohydrolase (EC 3.6.1.3, ATPase) was extracted from the plain synaptic vesicle fractions that were virtually devoid of contamination. The protein pattern of the ATPase preparation on SDS polyacrylamide gel electrophoresis closely resembled that of actomyosin from skeletal muscle. The finding suggests that the main components of the ATPase are actin- and myosin-like proteins of the brain (stenin and neurin). Microsome and synaptosomal plasmalemma fractions were extracted under the same conditions to examine the possibility that the ATPase extracted derived from contaminating particulates. An entirely different ATPase was extracted from microsomes, and no protein from plasma membranes. Although Ca2+-sensitive Mg2+-dependent ATPase was extracted from coated vesicle fraction, the electrophoretic pattern was dissimilar to that of the ATPase from plain synaptic vesicle fractions. It may be inferred that the whole complex of neurostenin is located in plain synaptic vesicles from the brain.  相似文献   

11.
Abstract: The subcellular distribution in rat brain cortex of six synaptic membrane antigens (56K, 58K, 62K, 63K, 64K, 66K) was studied by rocket immunoelectrophoresis, using antiserum to a highly purified synaptic plasma membrane fraction. Initial analysis of the insoluble portion of subcellular fractions showed that these antigens were also present in smooth microsomes, rough microsomes, and synaptic vesicles; that only traces were present in synaptic junctions; and that none was present in nuclei, mitochondria, and myelin. A trace amount of activity was also present in synaptic vesicle cytosol, but none in whole brain cytosol. Quantitative measurements of synaptic plasma membranes, smooth microsomes, and synaptic vesicles showed that all six antigens were present in synaptic plasma membranes and smooth microsomes, but that the 66K antigen was absent from synaptic vesicles. The 56K, 58K, 62K, 63K, and 64K antigens were present in highest concentration in synaptic plasma membranes, whereas the 66K antigen content was highest in smooth microsomes. Only the 58K, 62K, and 63K antigens were detectable in the membrane fraction of whole brain. Their enrichments in synaptic plasma membranes were 10.9, 5.4, and 5.9, respectively. We conclude that the 56K, 58K, 62K, 63K and 64K antigens are primary components of synaptic plasma membranes. The presence of synaptic plasma membrane antigens in smooth microsomes and synaptic vesicles probably represents material being actively transported, consistent with the hypothesis that proteins of synaptic plasma membranes and synaptic vesicles are transported via smooth endoplasmic reticulum.  相似文献   

12.
The phosphorylation of kinesin regulates its binding to synaptic vesicles.   总被引:2,自引:0,他引:2  
Membrane organella are transported bidirectionally in cells, and the axonal transport system has provided an ideal model system for studying this bidirectional transport. Kinesin and cytoplasmic dynein were identified as candidates for the motor molecules of fast axonal transport, which transport organella along microtubules anterogradely and retrogradely. However, the mechanism that controls this bidirectional transport is unknown. Our previous work revealed that kinesin in axons was associated abundantly with anterogradely transported membranous organella, most of which are believed to be precursors of synaptic vesicles and axonal plasma membranes, while the fractions bound to retrogradely transported ones were very small (Hirokawa, N., Sato-Yoshitake, R., Kobayashi, N., Pfister, K. K., Bloom, G. S., and Brady, S. T. (1991) J. Cell Biol. 114, 295-302). Here we demonstrated in vitro that the binding of kinesin to synaptic vesicles was concentration-dependent and saturable and could be released by high salt concentration. When kinesin was phosphorylated by cAMP-dependent protein kinase, its binding to symaptic vesicles was significantly reduced. By motility assay and by statistical analysis using electron microscopy, we further revealed that synaptic vesicles preincubated with phosphorylated kinesin associated less frequently with microtubules than synaptic vesicles preincubated with unphosphorylated kinesin. The phosphorylation of kinesin should therefore play an essential role in regulating the direction of fast axonal transport by inhibiting its binding to membrane organella, thus releasing it from membrane organella at nerve terminals.  相似文献   

13.
Although it has been well demonstrated that decapitation insult results in a rapid breakdown of the poly-phosphoinositides in brain, the subcellular site(s) for this event has not been examined in detail. Using rats that were injected intracerebrally with 32Pi to label the brain membrane phosphoinositides, decapitation treatment (0.5, 1.5 and 3.5 min) resulted in a decrease in labeled phosphatidylinositol 4,5-bisphosphates and phosphatidylinositol 4-phosphates in almost all subcellular fractions except myelin. However, the fractions exhibiting the most changes were synaptic vesicles, synaptic plasma membranes and the non-synaptic plasma membranes. The rapid response of poly-phosphoinositides in synaptic vesicles towards decapitation insult demonstrated a role of these phospholipids in vesicular membrane function. Besides the decrease in labeled phosphatidylinositol 4,5-bisphosphates which is attributed mainly to the action of phospholipase C, decapitation insult also elicited a near parallel decrease in labeled phosphatidylinositol 4-phosphates, and this was accompanied by a concomitant increase in labeled phosphatidylinositol which was observed mainly in the synaptic vesicles and synaptic plasma membrane fractions. This latter event suggests that besides degradation of phosphatidylinositol 4,5-bisphosphates by phospholipase C, some phosphatidylinositol 4-phosphates may have been degraded through the phosphomonoesterase pathway.  相似文献   

14.
The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl-n-hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal.  相似文献   

15.
In searching for binding partners of the intracellular domain of the immunoglobulin superfamily adhesion molecule CHL1, we identified the clathrin-uncoating ATPase Hsc70. CHL1 gene ablation resulted in reduced targeting of Hsc70 to the synaptic plasma membrane and synaptic vesicles, suggesting CHL1 as a synapse-targeting cue for Hsc70. CHL1 accumulates in presynaptic membranes and, in response to synapse activation, is targeted to synaptic vesicles by endocytosis. CHL1 deficiency or disruption of the CHL1/Hsc70 complex results in accumulation of abnormally high levels of clathrin-coated synaptic vesicles with a reduced ability to release clathrin. Generation of new clathrin-coated synaptic vesicles in an activity-dependent manner is inhibited when the CHL1/Hsc70 complex is disrupted, resulting in impaired uptake and release of FM dyes in synaptic boutons. Abnormalities in clathrin-dependent synaptic vesicle recycling may thus underlie brain malfunctions in humans and mice that carry mutations in the CHL1 gene.  相似文献   

16.
A procedure is described for the isolation of synaptic membrane fragments that retain such functionally important proteins as acetylcholine receptors, acetylcholinesterase, 3',5'-cyclic nucleotide phosphodiesterase, and (Na+ + K+)-ATPase. The method is based on the observation, made in brain slices, that junctional membranes are more resistant to phospholipase A2 attack than mitochondrial or plasma membranes. Hydrolysis by phospholipase A2 was controlled by addition of fatty acid-free bovine serum albumin. The membrane fraction obtained represents approximately a 15-fold enrichment of the postsynaptic marker proteins muscarinic and nicotinic acetylcholine receptor and 3',5'-cyclic nucleotide phosphodiesterase over an ordinary synaptic plasma membrane preparation, and is devoid of mitochondrial and microsomal contaminations. The membranes appear on the electron micrographs as rigid fragments (average length 2500-4000A), which do not form vesicles.  相似文献   

17.
Using preparations of synaptosomes and subsynaptosomal fractions from the rat brain, we studied the localization of thiamine-binding protein (TBP) in the subcellular structures of the neurons. In addition, we studied the distribution in synaptosomes of two types of activity typical of TBP (thiamine triphosphatase and thiamine-binding activities), as well as the effects of factors destroying the plasma membrane of synaptosomes on binding of [14C]thiamine with the latter. We found that the thiamine-associated activity of TBP was the highest in fractions of the synaptic vesicles and plasma membranes. Hydrolysis of thiamine triphosphate was also most active in these structures. Our results allow us to conclude that TBP is localized mostly in the synaptic vesicles and plasma membranes of synaptosomes.  相似文献   

18.
We have previously purified from bovine brain cytosol a novel regulatory protein for smg p25A, a ras p21-like GTP-binding protein. This protein, named smg p25A GDP dissociation inhibitor (GDI), regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. We have also previously found that smg p25A is mainly localized in presynaptic plasma membranes and vesicles and moderately in presynaptic cytosol in rat brain synapses. In this paper, we have studied the possible involvement of smg p25A GDI in the localization of smg p25A in the cytosol, plasma membranes, and vesicles in rat brain synapses. Both the GDP- and GTP-bound forms of smg p25A bound to the synaptic membranes and vesicles. smg p25A GDI inhibited the binding of the GDP-bound form of smg p25A, but not that of the GTP-bound form, to the synaptic membranes and vesicles. Moreover, smg p25A GDI induced the dissociation of the GDP-bound form, but not that of the GTP-bound form, of both endogenous and exogenous smg p25As from the synaptic membranes and vesicles. smg p25A GDI made a complex with the GDP-bound form of smg p25A with a molar ratio of 1:1, but not with the GTP-bound or guanine nucleotide-free form. These results suggest that smg p25A reversibly binds to synaptic plasma membranes and vesicles and that this reversible binding is regulated by its specific GDI.  相似文献   

19.
Using a cell-free system we investigated a specific role of cholesterol in exocytotic processes. To modulate the cholesterol content in membrane methyl-beta-cyclodextrin was used as a cholesterol binding agent. The experimental conditions for cholesterol depletion from synaptosomal membrane structures were determined and depended on methyl-beta-cyclodextrin concentration, time and mediums temperature. The role of cholesterol was studied on the stages of synaptic vesicles docking and Ca(2+)-stimulated fusion which are the components of multivesicular compound exocytosis. Using dynamic light scattering technique we have found that after cholesterol depletion from synaptic vesicles the process of their aggregation (docking) remains unchanged. It was found that the rate of calcium-triggered fusion of synaptic vesicles depends on the membrane level of cholesterol. The decreasing level of synaptosomal plasma membrane cholesterol by 8% leads to suppression of the Ca(2+)-dependent membrane fusion with synaptic vesicles. But, under 25% reduction of plasma membrane cholesterol the level of membrane merging with synaptic vesicles did not differ from control; probably this is due to changes in physical properties of lipid bilayer and/ or disturbances in function of membrane proteins driving this process. In cholesterol depleted synaptosomes the exocytotic release of glutamate stimulated by calcium was decreased by 32%. Obtained data suggest that the cholesterol concenration in synaptosomal plasma membranes or synaptic vesicles is the crucial determinant for synaptic transmission efficiency in nerve terminals.  相似文献   

20.
Synaptic vesicles from rat brain were labeled with125I, and the association of the vesicles with other subcellular components of brain was examined using a centrifugation assay. Copper at micromolar concentrations enhances the binding of the vesicles to the synaptic membrane as well as other fractions. Magnesium, Ca2+, and calmodulin with Ca2+ are ineffective. There is virtually no binding of synaptic vesicles to the microtuble fraction and only a slight enhancement with Cu2+. These findings support the hypothesis that Cu may serve as a bridge between synaptic vesicles and the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号