首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using the method of high performance liquid chromatography with electrochemical detection, the age dynamics of the content of noradrenaline (NA) in the brain, adrenal gland, and the organ of Zuckerkandl in prenatal (18th and 21st days of embryogenesis) and early postnatal (3, 7, 15, and 30th days) periods of development was studied. The potential contribution of these organs to the formation of physiologically active concentration of noradrenalin in the blood was also assessed. The results suggest that, during the development of the organism, the activity of the sources of noradrenaline in the general circulation changes, which gives a reason to assume the existence of humoral interaction between NA-producing organs in the perinatal period of ontogenesis.  相似文献   

3.
Study of fetal organ growth in Wistar rats from day 17 to 21   总被引:1,自引:0,他引:1  
A total of 1633 Wistar rat fetuses was used to determine weights of the fetus and several fetal organs on days 17 to 21 of gestation. Heart, lung, liver, kidney, stomach, intestine, brain, femur, thyroid and adrenal weights were recorded. Growth curves of the whole body and organs were calculated. A linear semi-log relationship between organ weight and day of gestation was shown. The doubling weight times were 1.5 days for whole bodies and for organs they ranged between 0.9 (spleen) and 3.4 (adrenals) days. A correlation between the rate of organ growth and the start of the organ function was observed.  相似文献   

4.
The influence of neonatal hypo- and hyperthyroidism on different aspects of tyrosine metabolism in the hypothalamus, striatum, brainstem, adrenal glands, heart and brown adipose tissue (BAT) were studied in 14-day old rats. The synthesis rate of catecholamines (CA) was also determined in vivo after the injection of labelled tyrosine. Hypothyroidism increases tyrosinaemia and endogenous tyrosine concentration in the hypothalamus and BAT. Hyperthyroidism decreases tyrosinaemia and endogenous tyrosine levels in the striatum, adrenals and heart. The accumulation rate of tyrosine determined 30 min after an intravenous injection of the labelled amino acid has been determined in the organs, together with the influx of the amino acid, determined within 20s. Hypothyroidism increases tyrosine accumulation rate in all the organs studied, and tyrosine clearance is decreased in the striatum and brainstem; together with an increased tyrosinaemia, this leads to a normal influx. The influx of tyrosine is increased in the hypothalamus. Hyperthyroidism decreases tyrosine accumulation rate in all the organs except the adrenals. These results indicate that the thyroid status of the young rat can influence tyrosine uptake mechanisms, without modifying an organ's tyrosine content. The fact that hypothyroidism increases tyrosine influx in the hypothalamus without modifying it in the brainstem and striatum reflects an heterogeneous reactivity to the lack of thyroid hormones in different brain structures. Neonatal hypothyroidism decreases the CA synthesis rate in the striatum, the heart and the interscapular brown adipose tissue, while synthesis was enhanced in the brainstem and the adrenals. It is likely that these variations in CA synthesis are due to thyroid hormone modulation of tyrosine hydroxylase activity, the enzyme which catalyses the rate limiting step in CA biosynthesis.  相似文献   

5.
The morphogenesis of individual organs and the whole organism occurs under the control of intercellular chemical signals mainly during the perinatal period of ontogenesis in rodents. In this study, we tested our hypothesis that the biologically active concentration of noradrenaline (NA) in blood in perinatal ontogenesis of rats is maintained due to humoral interaction between its central and peripheral sources based on their plasticity. As one of the mechanisms of plasticity, we examined changes in the secretory activity (spontaneous and stimulated release of NA) of NA-producing organs under deficiency of its synthesis in the brain. The destruction of NA-ergic neurons was provoked by administration of a hybrid molecular complex–antibodies against dopamine-β-hydroxylase associated with the cytotoxin saporin–into the lateral cerebral ventricles of neonatal rats. We found that 72 h after the inhibition of NA synthesis in the brain, its spontaneous release from hypothalamus increased, which was most likely due to a compensatory increase of NA secretion from surviving neurons and can be considered as one of the mechanisms of neuroplasticity aimed at the maintenance of its physiological concentration in peripheral blood. Noradrenaline secretion from peripheral sources (adrenal glands and the organ of Zuckerkandl) also showed a compensatory increase in this model. Thus, during the critical period of morphogenesis, the brain is integrated into the system of NA-producing organs and participates in their reciprocal humoral regulation as manifested in compensatory enhancement of NA secretion in each of the studied sources of NA under specific inhibition of NA production in the brain.  相似文献   

6.
Salsolinol (1,2,3,4-tetrahydro-6,7-dihydroxy-1-methylisoquinoline) is an endogenous prolactin releasing agent. Its action can be inhibited by another isoquinoline, 1-methyl-3,4-dihydroisoquinoline (1MeDIQ), which has a strong norepinephrine releasing activity. Salsolinol does not alter the dopamine release in median eminence in vitro, providing evidence for the lack of interaction with presynaptic D2 dopamine receptors. At the same time, lack of norepinephrine transporter abolishes salsolinol's action. Salsolinol decreases tissue level of dopamine and increases norepinephrine to dopamine ratio in organs innervated by the sympathetic nervous system indicating a possible decrease of norepinephrine release. Enzymes of catecholamine synthesis and metabolism are probably also not the site of action of salsolinol. In summary, based upon all of these observations a physiologically relevant interplay might exist between the sympatho-neuronal system and the regulation of prolactin release.  相似文献   

7.
The main prerequisite for organism’s viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats—before the blood-brain barrier is formed—proved to have equally high concentration of dopamine, serotonin, and gonadotropin-releasing hormone in the systemic circulation as in the adult portal system. After the brain-blood barrier is formed, the blood concentration of dopamine and gonadotropin-releasing hormone drops to zero, which indirectly confirms their cerebral origin. Moreover, the decrease in the blood concentration of dopamine, serotonin, and gonadotropin-releasing hormone before the brain-blood barrier formation after the microsurgical disruption of neurons that synthesize them or inhibition of dopamine and serotonin synthesis in the brain directly confirm their cerebral origin. Before the blood-brain barrier formation, dopamine, serotonin, gonadotropin-releasing hormone, and likely many other physiologically active substances of cerebral origin can have endocrine effects on peripheral target organs—anterior pituitary, gonads, kidney, heart, blood vessels, and the proper brain. Although the period of brain functioning as an endocrine organ is not long, it is crucial for the body development since physiologically active substances exert irreversible effects on the targets as morphogenetic factors during this period. Thus, the developing brain from the neuron formation to the establishment of the blood-brain barrier functions as a multipotent endocrine organ participating in endocrine control of the whole body development.  相似文献   

8.
Although the water channel protein aquaporin-1 (AQP1) is widely observed outside the rat brain in continuous, but not fenestrated, vascular endothelia, it has not previously been observed in any endothelia within the normal rat brain and only to a limited extent in the human brain. In this immunohistochemical study of rat brain, AQP1 has also been found in microvessel endothelia, probably of the fenestrated type, in all circumventricular organs (except the subcommissural organ and the vascular organ of the lamina terminalis): in the median eminence, pineal, subfornical organ, area postrema and choroid plexus. The majority of microvessels in the median eminence, pineal and choroid plexus, known to be exclusively fenestrated, are shown to be AQP1-immunoreactive. In the subfornical organ and area postrema in which many, but not all, microvessels are fenestrated, not all microvessels are AQP1-immunoreactive. In the AQP1-immunoreactive microvessels, the AQP1 probably facilitates water movement between blood and interstitium as one component of the normal fluxes that occur in these specialised sensory and secretory areas. AQP1-immunoreactive endothelia have also been seen in a small population of blood vessels in the cerebral parenchyma outside the circumventricular organs, similar to other observations in human brain. The proposed development of AQP1 modulators to treat various brain pathologies in which AQP1 plays a deleterious role will necessitate further work to determine the effect of such modulators on the normal function of the circumventricular organs.  相似文献   

9.
Summary Gelsolin was localized by immunocytochemistry in the developing cochlea of the rat. In normal animals, the protein appeared at 18 th day in utero in cells of the Kölliker's organ, which are involved in the secretion of the tectorial membrane. The Kölliker's organ cells were not immunoreactive after the first postnatal week, which is when they cease their secretory activity. Gelsolin immunoreactivity was similar in thyroid-deficient rats until the second postnatal week but, at this age, Kölliker's organ did not transform and its gelsolin immunoreactivity persisted, together with its secretory activity. As a result, the tectorial membrane was greatly distorted and out of contact with the hair cells, which dramatically impaired the mechanical properties of the organ of Corti. The developing cochlea thus provides an example of the involvement of gelsolin in a secretory process that is of importance in the development of hearing.  相似文献   

10.
Gene expression and content of the key enzymes involved in the synthesis of noradrenaline—tyrosine hydroxylase and dopamine beta-hydroxylase—was evaluated in the organ of Zuckerkandl of rats in the critical period of morphogenesis. High levels of mRNA and protein of both enzymes in the perinatal period of development and their sharp decline on day 30 of postnatal development were detected. These data indicate that the synthesis of noradrenaline in the organ of Zuckerkandl is maximum during the critical period of morphogenesis and decreases during the involution of this paraganglion.  相似文献   

11.
The development of a radiochemical enzyme assay for p-octopamine in 1969 led to its identification in a large number of invertebrate nerve systems and in mammalian sympathetic nerves. The original method by which p-octopamine was measured has now been found to be nonspecific; however, modifications of this procedure can determine both m- and p-octopamine. We recently developed a new specific method for the unequivocal identification and quantitative determination in tissue of the six octopamine and synephrine isomers. With this method--negative chemical ionization gas chromatography-mass spectrometry--the more physiologically active m-octopamine has been found in association with p-octopamine in 10 organs of the rat. m-Octopamine is present in concentrations equal to those of p-octopamine in heart, spleen, and liver and in concentrations from 30 to 60% of p-octopamine in adrenals, vas deferens, brain, kidney, large intestine, bladder, and lungs. In vivo inhibition of monoamine oxidase markedly increased the concentrations of both m- and p-octopamine in all organs examined. Both amines were virtually absent from all organs except the adrenals following chemical sympathectomy with 6-hydroxydopamine, thereby establishing that m- and p-octopamine are localized within sympathetic nerve endings.  相似文献   

12.
Spontaneous and K+-stimulated release of noradrenaline from the hypothalamus, adrenal gland, and organ of Zuckerkandl under their flowing incubation was investigated in the perinatal period of ontogenesis of rats. The results suggest that, during the investigated period of ontogenesis, adrenal glands are the main source of noradrenaline in the blood, whereas the contributions of the organ of Zuckerkandl and the brain are not as significant and change during this period.  相似文献   

13.
Biochemical properties and kinetic parameters of nonpurified dihydroxyphenylalanine-5-hydroxytryptophan decarboxylase extracted from brain and two peripheral organs, liver and adrenals, were studied in the cat. This study shows that decarboxylase activity in brain is lower than in peripheral organs and that 5-hydroxytryptophan can be decarboxylated without exogenous addition of pyridoxal-5'-phosphate (PLP). However, the addition of PLP substantially increases the enzyme activity. Excess of coenzyme (greater than 60 muM) induces inhibition in adrenals and liver but not in the central nervous system (CNS). The observed inhibition might be related to the presence of a tetrahydroisoquinoline derivative formed in the medium. Differentiation between mechanisms of action of decarboxylase in the CNS and peripheral organs is suggested.  相似文献   

14.
Acrylamide is present as a contaminant in the human diet in heated food products. It has been found to be carcinogenic in laboratory rats and has been classified as probably carcinogenic in humans. In order to clarify the possible involvement of a primary genotoxic mechanism in acrylamide-induced carcinogenicity, both the presence of DNA damage, measured by the comet assay, and the formation of N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade), derived from reaction of the active metabolite glycidamide (GA) with the DNA, analyzed by LC/MS/MS, were assessed in selected rat tissues. Rats were administered with single oral doses of acrylamide (18, 36 or 54 mg/kg body weight (b.w.) and the organs (blood leukocytes, brain, bone marrow, liver, testes and adrenals) were sampled at different times after treatment. Results from GA-induced DNA adduct measurements indicated a relatively even organ distribution of the adducts in brain, testes and liver. Organ-specificity in acrylamide carcinogenesis can therefore not be explained by a selective accumulation of GA-DNA adducts in the target organs, at least not after a single dose exposure. The DNA adduct profiles and half-lives were similar in the different organs; except that the N3-GA-Ade adduct was more rapidly removed from tissues than the N7-GA-Gua adduct. Increased extent of DNA migration, as measured by the in vivo rat comet assay, was found in brain and testes, and these specific results seem to be in accordance with the known organ-specificity in acrylamide carcinogenesis in rat. Only weak and transient DNA damage was recorded in the liver, bone marrow and adrenals. The DNA-damaging effect of the compound observed in the blood leukocytes could be a simple biomarker of acrylamide exposure and genotoxicity.  相似文献   

15.
Inhibition of norepinephrine re-uptake by angiotensin in brain   总被引:1,自引:0,他引:1  
—A method for perfusion of rat brain ventricles accompanied by electrical stimulation of right vagus nerve was used in the study of the re-uptake mechanism of norepinephrine in rat brain. Tritiated norepinephrine was injected into the left lateral brain ventricle. After a 1-hr equilibration period, the brain was perfused, and effluent was collected and assayed for norepinephrine, normetanephrine and acid metabolites by means of column chromatography and liquid scintillation counting. Electrical stimulation of central end of right vagus nerve produced a significant release of norepinephrine and decrease of acid metabolites; this indicates a shift of catecholamines to extracellular sites. Angiotensin (200 ng/min) added to the perfusion fluid potentiated the effect of nerve stimulation. Cocaine, desmethylimipramine and phenoxybenzamine greatly reduced the release of norepinephrine from brain tissue. None on these drugs potentiated the effect of angiotensin. It is concluded that angiotensin prevents re-uptake of norepinephrine released by nerve stimulation. As a naturally occurring, physiologically active peptide, angiotensin seems to be highly specific in modulation of adrenergie neurotransmission, allowing increased extraneuronal accumulation of neurotransmitter.  相似文献   

16.
—The activity of monoamine oxidase (MAO, EC 1.4.3.4) was measured in the entire hypothalamus and different hypothalamic regions, in the amygdala, frontal and lateral cerebral cortex, in the pituitary, adrenals and genital organs of male rats and of female rats during the estrus cycle. Activity of MAO changed cyclically in the hypothalamus, amygdala, adrenals and ovaries. The highest levels in the hypothalamus occurred at 10 a.m. on the day of proestrus and during estrus. The lowest levels occurred at 6 p.m. on the day of proestrus, of metestrus and during diestrus. Cyclical variations similar to those found in the whole hypothalamus were also observed in anterior, posterior and lateral portions and the median eminence of the hypothalamus. Activity in the median eminence was greater than that of the whole hypothalamus or its various other portions. The amygdala exhibited less marked cyclical activity which followed the pattern of the hypothalamus by increasing at 10 a.m. and peaking at 3 p.m. on the day of proestrus. At the‘post-critical’period of proestrus, when the activity of MAO in the hypothalamus and amygdala decreased, the activity of MAO in the ovaries and adrenals rose. During the estrus cycle much lower levels of activity of MAO were demonstrated in other regions of the brain (frontal and lateral cerebral cortex), in the pituitary and in the uterus, none of which showed cyclical changes. The changes in activity of MAO in cerebral tissues, endocrine glands and genital organs have been discussed in relation to the probable participation of monoamines in the mechanism(s) of secretion of gonadotrophins by the hypothalamus.  相似文献   

17.
The possible relationships of hypophyseo-adrenocortical axis in the evolution of enzyme monoamine oxidase (MAO) in rabbit foetuses from the age of 20 days was studied. The foetuses were deprived of their hypophysis by decapitation in utero at various ages. MAO was measured radiometrically in adrenals, kidneys, paraganglia, lung, liver and heart. There was a progressive rise in MAO activity determined on the 30th day in all cases in adrenals, kidneys and paraganglia following decapitation on the 20th day to 25th day. The activity in the above three organs remained highly significant from control levels even after decapitation on the 27th day. Lung, liver and heart demonstrated maximum activity after decapitation on the 23rd day. Administration of ACTH and hydrocortisone to the decapited foetuses for only once lowered MAO activity in adrenals, kidneys, heart and liver. The results provide evidence that the hormones of the hypophysis act as a rate limiting factor for MAO activity. Their deprivation upsets this rate limiting control resulting in marked rise in MAO activity.  相似文献   

18.
Summary In order to study the possible functional relationship between the adrenal gland and the subcommissural organ (SCO) in the lizard Lacerta s. sicula Raf., ACTH was administered to some specimens of this species in January when both the adrenal gland and the subcommissural organ have a very low activity. In comparison to untreated controls, the adrenals of animals treated with ACTH showed clear signs of stimulation, presenting enlarged blood vessels, very few lipid droplets, numerous polymorphic mitochondria and abundant tubular smooth endoplasmic reticulum. In addition, a distinct increase in secretory material was observed in the subcommissural cells of specimens treated with ACTH. These cells showed large cisternae of the rough endoplasmic reticulum filled with granular material in the basal region, numerous secretory granules of two types in the apical region and a reduced number of microvilli on the free cell surface. These findings, together with the results of preceding studies, lead the authors to the consideration that steroid hormones might play a role in the regulation of the secretory activity of the SCO.  相似文献   

19.
The aim of the present study was to describe postnatal organ and body weight growth in male Dunkin–Hartley guinea pigs from birth to 250 days of age. The modified JANOSCHEK growth curve was fitted to the age group means for each measurement by nonlinear regression and characteristics of the resulting growth curves were calculated. At birth, brain weight showed the highest percentage of its adult value (59%), followed by eye weight (37%). Lowest percentage birth weights were found for genital organs, adrenals and pancreas, the majority of organs showed values between 4% and 15%. Weights of body, heart, spleen, liver, genital organs, thyroids and adrenals followed a sigmoidal growth course. The remaining, as examined in this study, organs exhibited simple exponential growth without a postnatal point of inflection. Among internal organs, brain weight reaches adult size first (74 days of age). Genital organs with exception of prostate, duodenum, heart and spleen are fast-growing organs, too.  相似文献   

20.
Norepinephrine metabolism and nuclear RNA (nRNA) synthesis in the rat brain are found to be conjugated. Under the effect of preparations inducing a disturbance in the norepinephrine (sodium diethyldithiocarbamate and reserpine) its content in the brain tissue lowers and the nRNA synthesis intensity decreases. Accumulation on total resources of norepinephrine in the brain under the effect of ipraside or its synaptic form (melipramine, Lu-5) intensifies the nRNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号