首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

2.
《Journal of Asia》2020,23(3):840-844
Robber flies (Asilidae) are the main predatory fly family feeding on beetles, butterflies, other flies for true flies, and even spiders; however, Hymenoptera is the most common prey. Invasive Hymenoptera species are common in central and southern Chile; however, few predators of these are known. The hunting behavior and prey of Chilean robber fly species are also poorly known. The aim of this study is to provide the first hunting behavior records of five Chilean giant robber fly species on invasive Hymenoptera. In addition, an updated distribution of these species is provided. Records of hunting behavior were based on fieldwork collections and citizen science observations. The historical distribution was compared with citizen science observations using chi-square analyzes. Twelve predation events were recorded. Obelophorus terebratus was the most common predator. Bombus terrestris was the invasive Hymenoptera most preyed upon. Both the extension of occurrence of Lycomya germainii as Obelophorus species showed changes in his distribution. Only O. landbecki shown changes in area of occupancy. Citizen science is playing a key role in the knowledge of biological interactions and distribution of endemic and native Chilean robber fly species.  相似文献   

3.
Abstract. The previously unknown phylogenetic relationships among Mantodea (praying mantids) were inferred from DNA sequence data. Five genes (16S rDNA, 18S rDNA, 28S rDNA, cytochrome oxidase II and histone 3) were sequenced for sixty‐three taxa representing major mantid lineages and outgroups. The monophyly of mantid families and subfamilies was tested under varying parameter settings using parsimony and Bayesian analyses. The analyses revealed the paraphyly of Hymenopodidae, Iridopterygidae, Mantidae, and Thespidae and the monophyly of the Amorphoscelidae subfamily Paraoxypilinae. All represented subfamilies of Iridopterygidae and Mantidae appear paraphyletic. Mantoididae is sister group to the rest of the sampled mantid taxa. Lineages congruent with current subfamilial taxonomy include Paraoxypilinae, Hoplocoryphinae, Hymenopodinae, Acromantinae and Oligonicinae. The mantid hunting strategy is defined as either generalist, cursorial or ambush predators. By mapping hunting strategy onto our phylogeny, we reconstructed the ancestral predatory condition as generalist hunting, with three independent shifts to cursorial hunting and one shift to ambush hunting, associated with the largest radiation of mantid species.  相似文献   

4.
The insect order Diptera, the true flies, contains one of the four largest Mesozoic insect radiations within its suborder Brachycera. Estimates of phylogenetic relationships and divergence dates among the major brachyceran lineages have been problematic or vague because of a lack of consistent evidence and the rarity of well-preserved fossils. Here, we combine new evidence from nucleotide sequence data, morphological reinterpretations, and fossils to improve estimates of brachyceran evolutionary relationships and ages. The 28S ribosomal DNA (rDNA) gene was sequenced for a broad diversity of taxa, and the data were combined with recently published morphological scorings for a parsimony-based phylogenetic analysis. The phylogenetic topology inferred from the combined 28S rDNA and morphology data set supports brachyceran monophyly and the monophyly of the four major brachyceran infraorders and suggests relationships largely consistent with previous classifications. Weak support was found for a basal brachyceran clade comprising the infraorders Stratiomyomorpha (soldier flies and relatives), Xylophagomorpha (xylophagid flies), and Tabanomorpha (horse flies, snipe flies, and relatives). This topology and similar alternative arrangements were used to obtain Bayesian estimates of divergence times, both with and without the assumption of a constant evolutionary rate. The estimated times were relatively robust to the choice of prior distributions. Divergence times based on the 28S rDNA and several fossil constraints indicate that the Brachycera originated in the late Triassic or earliest Mesozoic and that all major lower brachyceran fly lineages had near contemporaneous origins in the mid-Jurassic prior to the origin of flowering plants (angiosperms). This study provides increased resolution of brachyceran phylogeny, and our revised estimates of fly ages should improve the temporal context of evolutionary inferences and genomic comparisons between fly model organisms.  相似文献   

5.
Based on the author’s own and the literature data, the zoogeographic analysis of robber flies (Asilidae) of the Lower Volga area was carried out for the first time. A total of 21 range types were distinguished and the fractions of different chorological groups in the fauna were determined. The zoogeographic structure of faunal complexes of robber flies inhabiting biotopes with different plant associations was studied.  相似文献   

6.
The robber fly Mallophora ruficauda is the most important pest of apiculture in the Pampas region of Argentina. Adults prey on honeybees and other insects, while larvae parasitize larvae of scarab beetles, which live underground. Females of M. ruficauda do not search for hosts but instead lay eggs in tall pastures. Once hatched, larvae drop to the ground and burrow underground to search for their hosts. We tested in the laboratory whether larvae of M. ruficauda actively search for their hosts using host and/or host-related chemical cues. We report that M. ruficauda detects its host using chemical cues that originate in the posterior half of the host's body, most likely from an abdominal exocrine structure. This particular host-searching strategy is described for the first time in Asilidae.  相似文献   

7.
The density‐dependence in parasitism by the robber fly Mallophora ruficauda (Diptera: Asilidae) on scarab beetle larvae (Coleoptera: Scarabaeidae) populations was studied in the present research. Mallophora ruficauda is a pestiferous species common in the open grasslands of the Pampas region of South America. Adults are predators of insects and larvae are solitary parasitoids of third instar larvae of several species of scarab beetle (Coleoptera: Scarabaeidae). In contrast with most studied host‐parasitoid interactions, host searching by M. ruficauda is carried out by both larvae and adults. Typically, robber fly females lay eggs on tall grasses from where larvae drop to the ground, and attack hosts which are buried in the soil. We carried out our study at two spatial scales close to 14 apiaries located in the provinces of Buenos Aires and Entre Ríos (Argentina). We found that parasitism is density‐independent at the larger spatial scale and inversely density‐dependent at the smaller one. We also found that M. ruficauda selects Cyclocephala signaticollis among several scarab beetle species. Specificity is observed both at large and small spatial scales. We discuss the implications of both host specificity and host searching behaviour on the observed parasitism patterns.  相似文献   

8.
The phylogenetic relationships of some angiosperm families have remained enigmatic despite broad phylogenetic analyses of rbcL sequences. One example is the aquatic family Podostemaceae, the relationships of which have long been controversial because of major morphological modifications associated with their aquatic habit. Podostemaceae have variously been associated with Piperaceae, Nepenthaceae, Polygonaceae, Caryophyllaceae, Scrophulariaceae, Rosaceae, Crassulaceae, and Saxifragaceae. Two recent analyses of rbcL sequences suggest a possible sister-group relationship of Podostemaceae to Crassulaceae (Saxifragales). However, the branch leading to Podostemaceae was long, and use of different outgroups resulted in alternative placements. We explored the phylogenetic relationships of Podostemaceae using 18S rDNA sequences and a combined rbcL + 18S rDNA matrix representing over 250 angiosperms. In analyses based on 18S rDNA data, Podostemaceae are not characterized by a long branch; the family consistently appears as part of a Malpighiales clade that also includes Malpighiaceae, Turneraceae, Passifloraceae, Salicaceae, Euphorbiaceae, Violaceae, Linaceae, Chrysobalanaceae, Trigoniaceae, Humiriaceae, and Ochnaceae. Phylogenetic analyses based on a combined 18S rDNA + rbcL data set (223 ingroup taxa) with basal angiosperms as the outgroup also suggest that Podostemaceae are part of a Malpighiales clade. These searches swapped to completion, and the shortest trees showed enhanced resolution and increased internal support compared to those based on 18S rDNA or rbcL alone. However, when Gnetales are used as the outgroup, Podostemaceae appear with members of the nitrogen fixing clade (e.g., Elaeagnaceae, Ulmaceae, Rhamnaceae, Cannabaceae, Moraceae, and Urticaceae). None of the relationships suggested here for Podostemaceae receives strong bootstrap support. Our analyses indicate that Podostemaceae are not closely allied with Crassulaceae or with other members of the Saxifragales clade; their closest relatives, although still uncertain, appear to lie elsewhere in the rosids.  相似文献   

9.
Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group to Syndermata.  相似文献   

10.
蝗科高级阶元的分子系统发育(英文)   总被引:2,自引:0,他引:2  
迄今,蝗科内各分类阶元之间的系统发生关系大部分是未知的。本文用来自中国24种蝗科昆虫的12SrDNA和16SrDNA2个基因的联合序列(共795bp)数据,以锥头蝗科的锥头蝗(Pyrgomorpha conica)为外群,重建了分子系统树。研究结果表明,在12SrDNA与16SrDNA组成的联合数据中,转换的替代速率明显比颠换的替代速率高得多,核酸的替代已经发生了饱和。分子系统树表明:斑翅蝗亚科是一单系群,该亚科是一个合法的亚科,但斑腿蝗亚科和蝗亚科都不是单系群;斑翅蝗亚科在蝗科内是一个相对原始的类群,而稻蝗亚科比斑翅蝗亚科相对进化,比蝗科的其他亚科的种类相对原始。  相似文献   

11.
Much uncertainty still exists regarding higher level phylogenetic relationships in the insect order Diptera, and the need for independent analyses is apparent. In this paper, I present a parsimony analysis that is based on details of the nervous system of flies. Because neural characters have received little attention in modern phylogenetic analyses and the stability of neural traits has been debated, special emphasis is given to testing the robustness of the analysis itself and to evaluating how neurobiological constraints (such as levels of neural processing) influence the phylogenetic information content. The phylogenetic study is based on 14 species in three nematoceran and nine brachyceran families. All characters used in the analysis are based on anatomical details of the neural organization of the fly visual system. For the most part they relate to uniquely identifiable neurons, which are cells or cell types that can be confidently recognized as homologues among different species and thus compared. Parsimony analysis results in a phylogenetic hypothesis that favors specific previously suggested phylogenetic relationships and suggests alternatives regarding other placements. For example, several heterodactylan families (Bombyliidae, Asilidae, and Dolichopodidae) are supported in their placement as suggested by Sinclair et al. (1993), but Tipulidae and Syrphidae are placed differently. Tipulidae are placed at a derived rather than ancestral position within the Nematocera, and Syrphidae are placed within the Schizophora. The analysis suggests that neural characters generally maintain phylogenetic information well. However, by "forcing" neural characters onto conventional phylogenetic analyses it becomes apparent that not all neural centers maintain such information equally well. For example, neurons of the second-order visual neuropil, the medulla, contain stronger phylogenetic "signal" than do characters of the deeper visual center, the lobula plate. These differences may relate to different functional constraints in the two neuropils.  相似文献   

12.
DNA data were collected from a number of acanthomorph fishes for 12S rDNA (30 sequences) and 16S rDNA (39 sequences) to investigate the phylogenetic relationships of genera within Cetomimidae (whalefishes) and of this family within the Stephanoberyciformes/Beryciformes assemblage. The Cetomimidae are apparently monophyletic. Within the family, species of Gyrinomimus and Cetomimus form a clade but the former genus is paraphyletic with respect to the latter. Cetostoma is sister to Ditropichthys rather than to Gyrinomimus plus Cetomimus as suggested by morphological analyses. Rondeletiidae + Cetomimidae + Barbourisiidae are shown, as expected from morphological analyses, as a monophyletic group in the 12S rDNA analyses, but not in the 16S rDNA or combined analyses, although the shortest trees showing the group require only one extra step in each case. These three families plus Melamphaidae (our sample of Stephanoberyciformes) are not shown as a group in any analysis, with Melamphaidae being sister to Berycidae in the 16S and combined analyses, but dispersed in the 12S analyses. Maximum-parsimony trees without imposed constraints are notably shorter than trees constrained to show ordinal groupings or either of the two main current hypotheses of Stephanoberyciformes/Beryciformes relationships. The length difference is highly significant for most comparisons using either 12S or 16S rDNA sets or their combination, and significant or nearly so for all comparisons. In particular, the Beryciformes is unlikely to be monophyletic. The Holocentridae are included, with high bootstrap and Bremer support, in a clade of non-beryciforms comprising the Gempylidae, Zeidae, and Atheriniformes (the only higher acanthomorphs sampled) and not with other Beryciform families. In these data, the Berycidae are the sister to the Melamphaidae, a stephanoberyciform family.  相似文献   

13.
With about 60,000 described species, Curculionoidea represent the most species-rich superfamily in the animal kingdom. The immense diversity apparently creates difficulties in the reconstruction of the phylogenetic relationships. Independent morphological studies have led to very different classifications. This study is based on molecular data from two independent molecular sources, the 16S and 18S rDNA. Sensitivity analyses were conducted for the sequence alignment (gap costs were varied) as well as the phylogenetic reconstruction algorithms and some of their parameters. The higher-level relationships reconstructed within Curculionoidea are sensitive to alignment and reconstruction method. Nemonychidae or Oxycorynidae+Belidae were found to be sister to all remaining Curculionoidea in many analyses. The 16S rDNA sequence data (obtained from 157 species) corroborate many tribes and genera as monophyletic. It is observed that the phylogenetic reconstruction of genera with specific genetic features such as polyploidy and parthenogenetic reproduction is difficult in weevils. The curculionid subfamily Lixinae appears monophyletic. A new monophylum consisting of Entiminae, Hyperinae, Cyclominae, Myllorhinus plus possibly the Cossoninae is distinguished and we call it Entiminae s.l. For most other subfamilies and families homoplasy concealed the phylogenetic signal (due to saturation of the 16S sequences), or the species sampling was insufficient, although our sampling scheme was rather broad. We observed that although data from one source can easily be misleading (16S) or hardly informative (18S), the combination of the two independent data sets can result in useful information for such a speciose group of organisms. Our study represents the most thorough analysis of molecular sequence data of the Curculionoidea to date and although the phylogenetic results appear less stable than expected, they reflect the information content of these sequence data realistically and thus contribute to the total knowledge about the phylogeny of the Curculionoidea.  相似文献   

14.
We assessed the utility of eight DNA sequence markers (5.8S rDNA, 18S rDNA, 28S rDNA, ITS regions, long-wavelength opsin, elongation factor 1-alpha, cytochrome b, and cytochrome oxidase I) in reconstructing phylogenetic relationships at various levels of divergence in gallwasps (Hymenoptera: Cynipidae), using a set of eight exemplar taxa. We report sequence divergence values and saturation levels and compare phylogenetic results of these sequences analyzed both separately and combined to a well-corroborated morphological phylogeny. Likelihood ratio tests were used to find the best evolutionary model fitting each of the markers. The likelihood model best explaining the data is, for most loci, parameter rich, with strong A-T bias for mitochondrial loci and strong rate heterogeneity for the majority of loci. Our data suggest that 28S rDNA, elongation factor 1-alpha, and long-wavelength opsin may be potentially useful markers for the resolution of cynipid and other insect within-family-level divergences (circa 50-100 mya old), whereas mitochondrial loci and ITS regions are most useful for lower-level phylogenetics. In contrast, the 18S rDNA marker is likely to be useful for the resolution of above-family-level relationships.  相似文献   

15.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

16.
Phylogenetic relationships within the Erythrobasidium clade as a lineage of the urediniomycetous yeasts were examined using partial regions of 18S rDNA, 5.8S rDNA, 26S rDNA, internal transcribed spacers (ITSs), and elongation factor (EF)-1alpha. Combined data analysis of all segments successfully yielded a reliable phylogeny and confirmed the cohesion of species characterized by Q-10(H2) as a major ubiquinone. Differences in secondary structure predicted for a variable region in 26S rDNA corresponded to major divergences in the phylogenetic tree based on the primary sequence. The common presence of a shortened helix in this region was considered to be evidence of monophyly for species with Q-10(H2), Sakaguchia dacryoides, Rhodotorula lactosa, and Rhodotorula lamellibrachiae, although it was not as strongly supported by the combined data tree. The information on intron positions in the EF-1alpha gene had potential usefulness in the phylogenetic inference between closely related species.  相似文献   

17.
Phylogenetic relationships within sponge classes are highly debated. The low phylogenetic signal observed with some current molecular data can be attributed to the use of few markers, usually slowly-evolving, such as the nuclear rDNA genes and the mitochondrial COI gene. In this study, we conducted a bioinformatics search for a new molecular marker. We sought a marker that (1) is likely to have no paralogs; (2) evolves under a fast evolutionary rate; (3) is part of a continuous exonic region; and (4) is flanked by conserved regions. Our search suggested the nuclear ALG11 as a potential suitable marker. We next demonstrated that this marker can indeed be used for solving phylogenetic relationships within sponges. Specifically, we successfully amplified the ALG11 gene from DNA samples of representatives from all four sponge classes as well as from several cnidarian classes. We also amplified the 18S rDNA and the COI gene for these species. Finally, we analyzed the phylogenetic performance of ALG11 to solve sponge relationships compared to and in combination with the nuclear 18S rDNA and the COI mtDNA genes. Interestingly, the ALG11 marker seems to be superior to the widely-used COI marker. Our work thus indicates that the ALG11 marker is a relevant marker which can complement and corroborate the phylogenetic inferences observed with nuclear ribosomal genes. This marker is also expected to contribute to resolving evolutionary relationships of other apparently slow-evolving animal phyla, such as cnidarians.  相似文献   

18.
Phylogenetic relationships of 6 species in the trematode subfamily Haplorchiinae were analyzed using small and large subunit of ribosomal DNA genes (18S rDNA and 28S rDNA) and internal transcribed spacer subunit II (ITS2) region as molecular markers. Maximum Likelihood and Bayesian inference analyses of combined rDNAs and ITS2 indicated a close relationship between the genera Haplorchis and Procerovum, while these two genera were distinct from Stellantchasmus falcatus. These phylogenetic relationships were consistent with the number of testes but not with the characters of the modification of the seminal vesicle or of the ventral sucker. Although three Haplorchis spp. were, together with Procerovum, in the same cluster, their mutual topology was incongruent between rDNA and ITS2 trees. Phylogenetic analyses using other molecular markers with more species are necessary to work out solid phylogenetic relationships among the species in this subfamily.  相似文献   

19.
Phylogenetic relationships among 95 genera collectively representing 17 of the 18 currently recognized cyclostome braconid wasp subfamilies were investigated based on DNA sequence fragments of the mitochondrial COI and the nuclear 28S rDNA genes, in addition to morphological data. The treatment of sequence length variation of the 28S partition was explored by either excluding ambiguously aligned regions and indel information (28SN) or recoding them (28SA) using the 'fragment-level' alignment method with a modified coding approach. Bayesian MCMC analyses were performed for the separate and combined data sets and a maximum parsimony analysis was also carried out for the simultaneous molecular and morphological data sets. There was a significant incongruence between the two genes and between 28S and morphology, but not for morphology and COI. Different analyses with the 28SA data matrix resulted in topologies that were generally similar to the ones from the 28SN matrix; however, the former topologies recovered a higher number of significantly supported clades and had a higher mean Bayesian posterior probability, thus supporting the inclusion of information from ambiguously aligned regions and indel events in phylogenetic analyses where possible. Based on the significantly supported clades obtained from the simultaneous molecular and morphological analyses, we propose that a total of 17 subfamilies should be recognized within the cyclostome group. The subfamilial placements of several problematic cyclostome genera were also established.  相似文献   

20.
Proseriate flatworms are common members of the interstitial benthic fauna worldwide, predominantly occupying marine environments. As minute animals, having relatively few characters useful for cladistic analysis, they have been difficult to present in a phylogenetic framework using morphology alone. Here we present a new morphological matrix consisting of 16 putatively homologous characters and two molecular data sets to investigate further this major group of free-living members of the Platyhelminthes. Complete 18S rDNA (representing 277 parsimony-informative characters) from 17 ingroup taxa and partial 28S rDNA spanning variable expansion regions D1 to D3 and D1 to D6 (representing 219 and 361 parsimony-informative characters, respectively) from 27 and 14 ingroup taxa, respectively, were determined and aligned as complementary data sets. Morphological and molecular data sets were analyzed separately and together to determine underlying phylogenetic patterns and to resolve conflict between published scenarios based on morphology alone. The monophyly of the Proseriata cannot be confirmed categorically with any of these data sets. However, the constituent taxa are confirmed as basal members of the Neoophora, and a sister group relationship with Tricladida is rejected. Similarly, the monophyly of one of the two subtaxa of the Proseriata, the Lithophora, could not be confirmed with molecules. Concerning intragroup relationships, we could reject one of the two phylogenetic trees formerly proposed, as well as the clade Otoplanidae + Coelogynoporidae. However, a clade Otoplanidae + Archimonocelididae + Monocelididae (to which the Monotoplanidae belong) was supported, and the position of the genus Calviria shifted from the Archimonocelididae to the Coelogynoporidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号