首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Early stages in development of the Escherichia coli cell-division site   总被引:2,自引:0,他引:2  
Development of the Escherichia coli cell division site was studied in wild-type cells and in non-septate filaments of ftsZ null and ftsZTs mutant cells. Localized regions of plasmolysis were used as markers for the positions of annular structures that are thought to be related to the periseptal annuli that flank the ingrowing septum during cytokinesis. The results show that these structures are localized at potential division sites in non-septate filaments of FtsZ- cells, contrary to previous reports. The positions of the structures along the long axis of the cells in both wild-type cells and FtsZ- filaments were unaffected by the presence of plasmolysis bays at the cell poles. These results do not agree with a previous suggestion that the apparent association of plasmolysis bays with future division sites was artefactual. They support the view that division sites begin to differentiate before the initiation of septal ingrowth and that plasmolysis bays and the annular attachments that define them, mark the locations of these early events in the division process.  相似文献   

2.
Phase-contrast and serial-section electron microscopy were used to study the patterns of localized plasmolysis that occur when cells of Salmonella typhimurium and Escherichia coli are exposed to hypertonic solutions of sucrose. In dividing cells the nascent septum was flanked by localized regions of periseptal plasmolysis. In randomly growing populations, plasmolysis bays that were not associated with septal ingrowth were clustered at the midpoint of the cell and at 1/4 and 3/4 cell lengths. The localized regions of plasmolysis were limited by continuous zones of adhesion that resembled the periseptal annular adhesion zones described previously in lkyD mutants of S. typhimurium (T. J. MacAlister, B. MacDonald, and L. I. Rothfield, Proc. Natl. Acad. Sci. USA 80:1372-1376, 1983). When cell division was blocked by growing divC(Ts) cells at elevated temperatures, the localized regions of plasmolysis were clustered along the aseptate filaments at positions that corresponded to sites where septum formation occurred when cell division was permitted to resume by a shift back to the permissive temperature. Taken together the results are consistent with a model in which extended zones of adhesion define localized compartments within the periplasmic space, predominantly located at future sites of cell division.  相似文献   

3.
Morphological evidence has previously indicated that the periplasmic space of Escherichia coli is compartmentalized at sites corresponding to future sites of cell division. The borders of these morphological compartments are formed by localized zones of adhesion (periseptal annuli). In the present study, the technique of fluorescence recovery after photobleaching was used to determine whether these structures act as barriers to the free movement of proteins within the periplasm. The recovery of fluorescence in the ftsA filaments was found to be uniformly low over at potential sites of cell division and at the cell poles, indicating that these regions are biochemically sequestered from the remainder of the periplasmic space. Our results provide direct evidence for local compartments within the periplasm, primarily located at the sites of past or future cell divisions. The implications of this finding for cell division and other periplasmic processes are discussed.  相似文献   

4.
The maize leaf is composed of a blade and a sheath, which are separated at the ligular region by a ligule and an auricle. Mutants homozygous for the recessive liguleless-1 (lg1) allele exhibit loss of normal ligule and auricle. The cellular events associated with development of these structures in both normal and liguleless plants are investigated with respect to the timing of cell division and differentiation. A new method is used to assess orientation of anticlinal division planes during development and to determine a division index based on recent epidermal cross-wall deposition. A normal leaf follows three stages of development: first is a preligule stage, in which the primordium is undifferentiated and dividing throughout its length. This stage ends when a row of cells in the preligule region divides more rapidly in both transverse and longitudinal anticlinal planes. During the second stage, ligule and auricle form, blade grows more rapidly than sheath, divisions in the blade become exclusively transverse in orientation, and differentiation begins. The third stage is marked by rapid increase in sheath length. The leaf does not have a distinct basal meristem. Instead, cell divisions are gradually restricted to the base of the leaf with localized sites of increased division at the preligule region. Divisions are not localized to the base of the sheath until near the end of development. The liguleless-1 homozygote shows no alteration in this overall pattern of growth, but does show distinct alteration in the anticlinal division pattern in the preligule region. Two abnormal patterns are observed: either the increase in division rate at the preligule site is absent or it exhibits loss of all longitudinal divisions so that only transverse (or cell-file producing) divisions are present. This pattern is particularly apparent in developing adult leaves on older lg1 plants, in which sporadic ligule vestiges form. From these and results previously published (Becraft et al. (1990) Devl Biol. 14), we conclude that the information carried by the Lg1+ gene product acts earlier in development than formation of the ligule proper. We hypothesize that Lg1+ may be effective at the stage when the blade-sheath boundary is first determined.  相似文献   

5.
Escherichia coli cells that contain the pss-93 null mutation are completely deficient in the major membrane phospholipid phosphatidylethanolamine (PE). Such cells are defective in cell division. To gain insight into how a phospholipid defect could block cytokinesis, we used fluorescence techniques on whole cells to investigate which step of the cell division cycle was affected. Several proteins essential for early steps in cytokinesis, such as FtsZ, ZipA, and FtsA, were able to localize as bands to potential division sites in pss-93 filaments, indicating that the generation and localization of potential division sites was not grossly affected by the absence of PE. However, there was no evidence of constriction at most of these potential division sites. FtsZ and green fluorescent protein (GFP) fusions to FtsZ and ZipA often formed spiral structures in these mutant filaments. This is the first report of spirals formed by wild-type FtsZ expressed at normal levels and by ZipA-GFP. The results suggest that the lack of PE may affect the correct interaction of FtsZ with membrane nucleation sites and alter FtsZ ring structure so as to prevent or delay its constriction.  相似文献   

6.
The localization of cell division protein FtsQ in Escherichia coli wild-type cells was studied by immunofluorescence microscopy with specific monoclonal antibodies. FtsQ could be localized to the division site in constricting cells. FtsQ could also localize to the division site in ftsQ1(Ts) cells grown at the permissive temperature. A hybrid protein in which the cytoplasmic domain and the transmembrane domain were derived from the γ form of penicillin-binding protein 1B and the periplasmic domain was derived from FtsQ was also able to localize to the division site. This result indicates that the periplasmic domain of FtsQ determines the localization of FtsQ, as has also been concluded by others for the periplasmic domain of FtsN. Noncentral FtsQ foci were found in the area of the cell where the nucleoid resides and were therefore assumed to represent sites where the FtsQ protein is synthesized and simultaneously inserted into the cytoplasmic membrane.  相似文献   

7.
Summary The capacity of E. coli B/r to support recombination and complementation between T4am phages during its life cycle has been analyzed in order to get information on the mechanism of cell division. It was found that a decrease in recombinants and complementation events, which is expected at the time of cell compartmentalization coincides with physical cell separation. Therefore, we conclude that the two halves of a dividing cell remain connected until a very late stage of the division period, thus allowing exchange of DNA and protein molecules.When a synchronized culture of E. coli B/r is infected at different cell age with phage T4, the number of surviving cells increases 10 min prior to cell division. At this time the cells are separated into two independent targets for killing by the phage, although there is still free exchange of DNA and proteins within the whole cell. The localized action of murein metabolizing enzymes at the site of subsequent cell division is likely to create a barriere within the cell envelope that prevents the propagation of the phage killing signal.  相似文献   

8.
Electron microscopic studies emphasized that the protein-E-specific transmembrane tunnel structure, which permeabilizes Escherichia coli, is not randomly distributed over the cell envelope but is restricted to areas of potential division sites. These sites were located predominantly in the middle of the cell, but approximately one-third of these structures are found at the polar sites. Therefore, E. coli mutant strains with defects in cell division components were tested for their sensitivity to protein-E-mediated lysis. The ftsZ84 and the ftsA12 cell division mutant strains of E. coli were tolerant to protein-E-mediated lysis, whereas the ftsA3 mutant strain was lysed by protein E under conditions nonpermissive for division. The protein-E-tolerant phenotype of ftsZ84 and ftsA12 and the lysis-sensitive phenotype of other components of the septosome (e.g., ftsA3, ftsQ, and ftsI) suggest that initiation of cell division – rather than specific functions of cell division – plays an essential role in protein-E-mediated lysis. SulA-overproducing cells had a lysis-positive phenotype, the ring structure – but not the GTPase function - of FtsZ was impaired. Received: 14 April 1998 / Accepted: 9 June 1998  相似文献   

9.
Summary OmpC and OmpF are major outer membrane proteins and although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine their differences, we have constructed a series of ompC-ompF chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The recombination sites in the chimeric genes were localized by means of restriction endonuclease analysis and nucleotide sequence determination. Most of the chimeric gene products were accumulated in the outer membrane. One of the chimeric gene products, with a fusion site in a central region between the OmpC and OmpF proteins, was normally expressed but not accumulated in the outer membrane. The trimeric structures of some of the chimeric gene products appeared to be extremely unstable in a SDS solution. From these results, domains contributing to the formation of specific structures in which the OmpC and OmpF proteins differ were identified. Bacterial cells possessing the chimeric gene products were also investigated as to their sensitivity to phages that require either OmpC or OmpF as a receptor component. With the aid of the chimeric gene products, the immunogenic determinants for three anti-OmpC monoclonal antibodies were found to be localized at different portions of the OmpC polypeptide: the N-terminal, central and C-terminal portions, respectively.  相似文献   

10.
红毛菜丝状体核分裂研究   总被引:1,自引:0,他引:1       下载免费PDF全文
选择具异型世代交替的福建人工栽培的红毛菜为研究材料,对红毛菜丝状体世代的丝状藻丝及孢子囊枝等阶段进行了较系统的核分裂观察研究,探讨红毛菜核分裂特征.结果显示:红毛菜营养藻丝和孢子囊枝细胞均为二倍体细胞,2n=8,其核分裂显示为有丝分裂的过程;同时,丝状体阶段细胞核分裂至前期末均会出现同源染色体配对现象,显示有丝分裂同源染色体配对行为是红毛菜丝状体核分裂的一个重要特征.  相似文献   

11.
It previously has been shown that lkyD mutants of Salmonella typhimurium form large blebs of outer membrane over the septal and polar regions of dividing cells. To determine whether the outer membrane blebs are formed over potential sites of division even in the absence of septal ingrowth, lkyD strains were studied under conditions in which ingrowth of inner membrane and murein was prevented by inactivation of the envA gene product. In aseptate filaments of the LkyD EnvA strain, outer membrane blebs occurred with the usual frequency and were preferentially located over regions where new septa were formed when cell division was subsequently permitted to resume. The results indicate that the outer membrane blebs of the LkyD strain are markers for potential sites of cell division, implying that an alteration in association of outer membrane and murein exists in these sites before the initiation of septal ingrowth. This localized change in cell envelope organization is independent of the septation-inducing effects of the envA gene product.  相似文献   

12.
Cowpea (Vigna unguiculata (L.) Walp.) nodules have been investigated by means of cytochemical and immunocytochemical procedures at the ultrastructural level in order to assess the role of the uninfected cells in ureide biogenesis. Uricase activity in the nodules was shown by cytochemical methods to be localized exclusively in the numberous large peroxisomes confined to the uninfected cells; the small peroxisomes in the infected cells did not stain for uricase. Uricase was also localized in the peroxisomes of uninfected cells by immunogold techniques employing polyclonal antibodies against nodule-specific uricase of soybean. There was no labeling above background of any structures in the infected cells. The results indicate that the uninfected cells are essential for ureide biogenesis in cowpea. Although tubular endoplasmic reticulum, the presumptive site of allantoinase, increases greatly in the uninfected cells during nodule development, it virtually disappears as the nodules mature. The inconsistency between the disappearance of the tubular endoplasmic reticulum from older nodules and the high allantoinase activity reported for older plants remains to be explained.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum - GARG goat anti-rabbit immunoglobulin G - IgG immunoglobulin G - kDa knodalton - Mr apparent molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

13.
The anaphase‐promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that is involved in regulating cell‐cycle progression. It has been widely studied in yeast and animal cells, but the function and regulation of the APC/C in plant cells are largely unknown. The Arabidopsis APC/C comprises at least 11 subunits, only a few of which have been studied in detail. APC4 is proposed to be a connector in the APC/C in yeast and animals. Here, we report the functional characterization of the Arabidopsis APC4 protein. We examined three heterozygous plant lines carrying apc4 alleles. These plants showed pleiotropic developmental defects in reproductive processes, including abnormal nuclear behavior in the developing embryo sac and aberrant cell division in embryos; these phenotypes differ from those reported for mutants of other subunits. Some ovules and embryos of apc4/+ plants also accumulated cyclin B protein, a known substrate of APC/C, suggesting a compromised function of APC/C. Arabidopsis APC4 was expressed in meristematic cells of seedlings, ovules in pistils and embryos in siliques, and was mainly localized in the nucleus. Additionally, the distribution of auxin was distorted in some embryos of apc4/+ plants. Our results indicate that Arabidopsis APC4 plays critical roles in female gametogenesis and embryogenesis, possibly as a connector in APC/C, and that regulation of auxin distribution may be involved in these processes.  相似文献   

14.
Summary In an electron microscopic study on the dikaryotic hyphae ofSchizophyllum commune, microtubules were observed during the nuclear division, and close to the non-dividing nuclei of apical cells and older cells. Microtubules of the spindle were connected with semicircular bodies at nuclear poles. Microfilaments were detected in the distal part of the apical cells. Vesicles similar to those in the tips of the hyphae occured also at the sites of septa formation. The occurrence of microtubules and the structure of semicircular bodies are compared with those in other basidiomycetes. It is suggested that vesicles are involved in the primary growth of the septal cross wall.  相似文献   

15.
 We have previously reported that antropyloric gastrin (G) and somatostatin (D) cells derive from precursor (G/D) cells that coexpress both hormones. We have now analyzed this endocrine cell pedigree for binding of Ulex europaeus agglutinin-I (UEA-I), which previously has been reported to represent a useful marker for cell differentiation. Subpopulations of G/D, D, and G cells were all found to express UEA-I binding. Labelling with bromodeoxyuridine showed that UEA-I positive G cells possessed a higher labelling index than UEA-I negative G cells. These data suggest that the UEA-I positive G cells represent maturing cells still involved in DNA synthesis and cell division. Electron microscopically, specific UEA-I binding sites were localized to the secretory granules and the apical cell membrane of G cells. We conclude that UEA-I represents a differentiation marker for G cells. Moreover, the presence of UEA-I binding sites in these cells may be relevant for Helicobacter pylori-mediated disturbances of gastric acid secretion and gastrin hypersecretion. Accepted: 19 August 1997  相似文献   

16.
The archaea Sulfolobus utilizes the ESCRT‐III‐based machinery for cell division. This machinery comprises three proteins: CdvA, Eukaryotic‐like ESCRT‐III and Vps4. In addition to ESCRT‐III, Sulfolobus cells also encode three other ESCRT‐III homologs termed ESCRT‐III‐1, ?2 and ?3. Herein, we show that ESCRT‐III‐1 and ?2 in S. islandicus REY15A are localized at midcell between segregating chromosomes, indicating that both are involved in cell division. Genetic analysis reveals that escrt‐III‐2 is indispensable for cell viability and cells with reduced overall level of ESCRT‐III‐1 exhibit growth retardation and cytokinesis defect with chain‐like cell morphology. In contrast, escrt‐III‐3 is dispensable for cell division. We show that S. islandicus REY15A cells generate buds when infected with S. tengchongensis spindle shaped‐virus 2 (STSV2) or when ESCRT‐III‐3 is over‐expressed. Interestingly, Δescrt‐III‐3 cells infected with STSV2 do not produce buds. These results suggest that ESCRT‐III‐3 plays an important role in budding. In addition, cells over‐expressing the C‐terminal truncated mutants of ESCRT‐III, ESCRT‐III‐1 and ESCRT‐III‐2 are maintained predominantly at the early, late, and membrane abscission stages of cell division respectively, suggesting a crucial role of the ESCRTs at different stages of membrane ingression. Intriguingly, intercellular bridge and midbody‐like structures are observed in cells over‐expressing MIM2‐truncated mutant of ESCRT‐III‐2.  相似文献   

17.
Two cell division mutants (Ftn2 and Ftn6) of the cyanobacterium Synechococcus sp. PCC 7942 were studied using scanning electron microscopy and transmission electron microscopy methods. This included negative staining and ultrathin section analysis. Different morphological and ultrastructural features of mutant cells were identified. Ftn2 and Ftn6 mutants exhibited particularly elongated cells characterized by significantly changed shape in comparison with the wild type. There was irregular bending, curving, spiralization, and bulges as well as cell branching. Elongated mutant cells were able to initiate cytokinesis simultaneously in several division sites which were localized irregularly along the cell. Damaged rigidity of the cell wall was typical of many cells for both mutants. Thylakoids of mutants showed modified arrangement and ultrastructural organization. Carboxysome-like structures without a shell and/or without accurate polyhedral packing protein particles were often detected in the mutants. However, in the case of Ftn2 and Ftn6, the average number of carboxysomes per section was less than in the wild type by a factor of 4 and 2, respectively. These multiple morphological and ultrastructural changes in mutant cells evinced pleiotropic responses which were induced by mutations in cell division genes ftn2 and ftn6. Ultrastructural abnormalities of Ftn2 and Ftn6 mutants were consistent with differences in their proteomes. These results could support the significance of FTN2 and FTN6 proteins for both cyanobacterial cell division and cellular physiology.  相似文献   

18.
Inhibition of cell division is critical for viability under DNA‐damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS‐induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C‐terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild‐type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C‐terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.  相似文献   

19.
Summary Cell-extracellular matrix interactions are recognized to be important for human leucocyte functions, including chemotaxis and phagocytosis. These activities depend on a reorganization of the microfilament actin (F-actin) promoted by fibronectin, one of the major components of extracellular matrices. Although invertebrate haemocytes are, in many aspects, similar to the human granulocyte-monocyte-macrophage cell lineage, actin and fibronectin have not been well studied in these cells. Consequently, the characterization and structural organization of actin and fibronectin in mussel (Mytilus galloprovincialis) haemocytes was investigated using Western blotting analysis, indirect immunofluorescence and immunoelectron microscopy. Actin was immunocharacterized by an anti-total actin monoclonal antibody. Fibronectin was immunocharacterized by an autologous polyclonal antiserum directed against the protein of mussel haemolymph. Actin was mainly localized along the peripheral cytoplasm of the haemocyte. The distribution of the F-actin microfilaments was assayed with Rhodamine-labelled phalloidin. F-actin was associated mainly with stress-fibres of spreading haemocytes and with microspikes at the adhesion sites. The labelling by the anti-fibronectin antiserum of the haemocyte rough endoplasmic reticulum vesiles, revealed by immunoelectron microscopy, suggests that these cells are involved in fibronectin biosynthesis. Gold particles were also present along the outer surfaces of the cell plasma membrane and its protrusions. Mussel fibronectin was localized immunohistochemically at the adhesion sites and in the extracellular matrix fibrils. The relationships between fibronectin and the actin cystoskeleton inMytilus galloprovincialis haemocytes are discussed.  相似文献   

20.
The distribution and synthesis of nucleic acids and proteins during gibberellic acid-induced germination of spores of Anemia phyllitidis were studied in order to relate biochemical activity with morphogenetic aspects of germination. Germination is accompanied by the hydrolysis of storage protein granules and the localized appearance of cytoplasmic RNA, protein, and insoluble carbohydrates in a small area adjoining the spore wall and surrounding the nucleus. The protoplast of the spore enlarges in this region, the spore wall breaks and a protonemal cell is formed which contains many chloroplasts. A second division in the spore at right angles to the first yields a rhizoid cell. Autoradiography of 3H-thymidine incorporation has shown that DNA is synthesized both in the nucleus and in the immediately surrounding cytoplasm of the germinating spore until some time after the first division, although a strictly nuclear DNA synthesis is observed later. Synthesis of RNA and proteins is limited to the presumptive regions of the germinating spore which become the protonema and rhizoid, shifting to specific sites in these cells as germination proceeds. The nucleus of the spore continues to be biosynthetically active long after it ceases to divide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号