首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

2.
Malaria is transmitted by Plasmodium-infected anopheles mosquitoes. Widespread resistance of mosquitoes to insecticides and resistance of parasites to drugs highlight the urgent need for malaria vaccines. The most advanced malaria vaccines target sporozoites, the infective form of the parasite. A major target of the antibody response to sporozoites are the repeat epitopes of the circumsporozoite (CS) protein, which span almost one half of the protein. Antibodies to these repeats can neutralize sporozoite infectivity. Generation of protective antibody responses to the CS protein (anti-CS Ab) requires help by CD4 T cells. A CD4 T cell epitope from the CS protein designated T* was previously identified by screening T cells from volunteers immunized with irradiated P. falciparum sporozoites. The T* sequence spans twenty amino acids that contains multiple T cell epitopes restricted by various HLA alleles. Subunit malaria vaccines including T* are highly immunogenic in rodents, non-human primates and humans. In this study we characterized a highly conserved HLA-DRβ1*04:01 (DR4) restricted T cell epitope (QNT-5) located at the C-terminus of T*. We found that a peptide containing QNT-5 was able to elicit long-term anti-CS Ab responses and prime CD4 T cells in HLA-DR4 transgenic mice despite forming relatively unstable MHC-peptide complexes highly susceptible to HLA-DM editing. We attempted to improve the immunogenicity of QNT-5 by replacing the P1 anchor position with an optimal tyrosine residue. The modified peptide QNT-Y formed stable MHC-peptide complexes highly resistant to HLA-DM editing. Contrary to expectations, a linear peptide containing QNT-Y elicited almost 10-fold lower long-term antibody and IFN-γ responses compared to the linear peptide containing the wild type QNT-5 sequence. Some possibilities regarding why QNT-5 is more effective than QNT-Y in inducing long-term T cell and anti-CS Ab when used as vaccine are discussed.  相似文献   

3.
In order to characterize T cell epitopes in the Plasmodium falciparum circumsporozoite (CS) protein sequence, we isolated T cell clones, from non-immune donors, which reacted with synthetic peptides corresponding to two predicted CS protein T cell epitopes. Peptide CS.T3 (corresponding to a non-polymorphic region of the CS protein, residues 378-398) was recognized in association with either DR2 or DRw9 restriction elements. T cell clones recognizing CS.T3 also reacted with the sporozoite-derived CS protein. Peptide CS.T2 corresponds to a polymorphic region (residues 325-341) of the CS protein. Unlike the CS.T3-specific clones, the CS.T2-specific clones did not recognize the CS protein. Since the CS.T2 peptide includes residues which are polymorphic in different P. falciparum isolates, we investigated whether these residues were critical for recognition of the peptide. We show here that a single amino acid substitution at a position of the CS protein which shows genetic polymorphism affects recognition of the sequence by human T cells. The implications of these data for malaria vaccine development are discussed.  相似文献   

4.
In order to identify T cell epitopes recognized by human in the Plasmodium vivax circumsporozoite protein, 28 overlapping synthetic peptides spanning the entire circumsporozoite protein were tested for their ability to stimulate proliferation of PBMC from 22 adults living in a malaria-endemic area of the Colombian Pacific Coast and from four individuals who never had a history of malaria infection. In addition, BALB/c mice were immunized with pools of peptides, and their lymph node cells were stimulated in vitro with individual peptides. Four epitopes were recognized by human lymphocytes but not all of them by mice. One of the epitopes was located inside the central repetitive B cell immunodominant domain. Several of the variants of the repeats were recognized by about one-third of the studied individuals. Another T cell epitope was located in the amino terminus and the other two in the carboxyl region. Peptides were recognized by both immune and nonimmune donors. Some of them were frequently recognized suggesting a lack of genetic restriction, whereas some others were recognized by only a few individuals but induced strong proliferation. These epitopes may be of potential value for a malaria subunit vaccine.  相似文献   

5.
Natural immunity to malaria is characterized by low level CD4 T cell reactivity detected by either lymphoproliferation or IFN-gamma secretion. Here we show a doubling in the detection rate of responders to the carboxyl terminus of circumsporozoite protein (CS) of Plasmodium falciparum by employing three T cell assays simultaneously: rapid IFN-gamma secretion (ex vivo ELISPOT), IFN-gamma secretion after reactivation of memory T cells and expansion in vitro (cultured ELISPOT), and lymphoproliferation. Remarkably, for no individual peptide did a positive response for one T cell effector function correlate with any other. Thus these CS epitopes elicited unique T cell response patterns in malaria-exposed donors. Novel or important epitope responses may therefore be missed if only one T cell assay is employed. A borderline correlation was found between anti-CS Ab levels and proliferative responses, but no correlation was found with ex vivo or cultured IFN-gamma responses. This suggested that the proliferating population, but not the IFN-gamma-secreting cells, contained cells that provide help for Ab production. The data suggest that natural immunity to malaria is a complex function of T cell subgroups with different effector functions and has important implications for future studies of natural T cell immunity.  相似文献   

6.
The humoral and cellular antisporozoite immune responses of a laboratory-born chimpanzee were measured following multiple exposures to the bites of Plasmodium vivax-infected mosquitoes. T cell lines and clones derived from the chimpanzee's PBL were used to identify T cell epitopes of the P. vivax circumsporozoite (CS) protein. Two independently obtained cell lines, established by culturing the PBL with either a recombinant P. vivax circumsporozoite (rPvCS) protein or a pool of synthetic peptides spanning the rPvCS sequence, recognized a 20-mer peptide from a nonpolymorphic region of the carboxyl terminus of the CS protein. This peptide overlaps a sequence homologous to region II of the Plasmodium falciparum CS protein. A third T cell line recognized an epitope within the central repeat domain, which has recently been found to be a polymorphic region of the P. vivax CS protein. The CD4+ clones derived from this third T cell line secreted IFN-gamma and IL-2 when stimulated with either the P. vivax repeat peptide (DRAAGQPAG)2 or the rPvCS protein.  相似文献   

7.
This open-labeled phase I study provides the first demonstration of the immunogenicity of a precisely defined synthetic polyoxime malaria vaccine in volunteers of diverse HLA types. The polyoxime, designated (T1BT(*))(4)-P3C, was constructed by chemoselective ligation, via oxime bonds, of a tetrabranched core with a peptide module containing B cell epitopes and a universal T cell epitope of the Plasmodium falciparum circumsporozoite protein. The triepitope polyoxime malaria vaccine was immunogenic in the absence of any exogenous adjuvant, using instead a core modified with the lipopeptide P3C as an endogenous adjuvant. This totally synthetic vaccine formulation can be characterized by mass spectroscopy, thus enabling the reproducible production of precisely defined vaccines for human use. The majority of the polyoxime-immunized volunteers (7/10) developed high levels of anti-repeat Abs that reacted with the native circumsporozoite on P. falciparum sporozoites. In addition, these seven volunteers all developed T cells specific for the universal epitope, termed T(*), which was originally defined using CD4(+) T cells from protected volunteers immunized with irradiated P. falciparum sporozoites. The excellent correlation of T(*)-specific cellular responses with high anti-repeat Ab titers suggests that the T(*) epitope functioned as a universal Th cell epitope, as predicted by previous peptide/HLA binding assays and by immunogenicity studies in mice of diverse H-2 haplotypes. The current phase I trial suggests that polyoximes may prove useful for the development of highly immunogenic, multicomponent synthetic vaccines for malaria, as well as for other pathogens.  相似文献   

8.
We have in this work mapped epitopes and HLA molecules used in human T cell recognition of the Mycobacterium leprae LSR protein antigen. HLA typed healthy subjects immunized with heat killed M. leprae were used as donors to establish antigen reactive CD4+ T cell lines which were screened for proliferative responses against overlapping synthetic peptides covering the C-terminal part of the antigen sequence. By using this approach we were able to identify two epitope regions represented by peptide 2 (aa 29-40) and peptide 6 (aa 49-60), of which the former was mapped in detail by defining the N- and C-terminal amino acid positions necessary for T cell recognition of the core epitope. MHC restriction analysis showed that peptide 2 was presented to T cells by allogeneic cells coexpressing HLA-DR4 and DRw53 or DR7 and DRw53. In contrast, peptide 6 was presented to T cells only in the context of HLA-DR5 molecules. In conclusion, the M. leprae LSR protein antigen can be recognized by human T cells in the context of multiple HLA-DR molecules, of which none are reported to be associated with the susceptibility to develop leprosy. The results obtained are in support of using the LSR antigen in subunit vaccine design.  相似文献   

9.
To identify vaccine relevant T cell epitopes on the circumsporozoite (CS) protein of Plasmodium falciparum, the lymphocyte proliferative responses to 10 CS protein derived peptides were studied in 28 adult Kenyans, and correlated with resistance to malaria. Eight peptides, six of which were not overlapping, induced proliferation of lymphocytes from one to five volunteers, suggesting either genetic restriction of response to each of the T epitopes, or dominance of some T sites on the immunizing sporozoites. The 28 volunteers were radically cured of malaria and during the next 126 days 25 of the 28 were reinfected. Resistance to malaria was not correlated with antibodies to malaria Ag, but was significantly correlated with lymphocyte responses to CS protein residues 361-380 and 371-390. Among the 25 volunteers who became re-infected with malaria, lymphocytes from only two responded to a peptide including residues 361-380 of the P. falciparum CS protein, and only one to peptide 371-390. In contrast, lymphocytes from all three volunteers who did not become infected responded to peptide 361-380 (p = 0.003), and lymphocytes from two of the three responded to peptide 371-390 (p = 0.023). The significant correlation between proliferation to peptides 361-380 and 371-390 and resistance to malaria suggests that at least one epitope within these overlapping peptides is involved in a protective cellular immune response. The data support inclusion of these residues in future CS protein vaccines.  相似文献   

10.
We studied the mechanisms of antigen presentation of CD4 T cell epitopes of the capsular Caf1 antigen of Yersinia pestis using murine bone marrow macrophages as antigen presenting cells and T cell hybridomas specific for major histocompatibility complex (MHC) class II-restricted epitopes distributed throughout the Caf1 sequence. The data revealed diversity in the pathways used and the degrees of antigen processing required depending on the structural context of epitopes within the Caf1 molecule. Two epitopes in the carboxyl-terminal globular domain were presented by newly synthesized MHC class II after low pH-dependent lysosomal processing, whereas an epitope located in a flexible amino-terminal strand was presented by mature MHC class II independent of low pH and with no detectable requirement for proteolytic processing. A fourth epitope located between the two regions of Caf1 showed intermediate behavior. The data are consistent with progressive unfolding and cleavage of rCaf1 from the amino terminus as it traverses the endosomal pathway, the availability of epitopes determining which pool of MHC class II is preferentially loaded. The Caf1 capsular protein is a component of second generation plague vaccines and an understanding of the mechanisms and pathways of MHC class II-restricted presentation of multiple epitopes from this candidate vaccine antigen should inform the choice of delivery systems and adjuvants that target vaccines successfully to appropriate intracellular locations to induce protective immune responses against as wide a T cell repertoire as possible.  相似文献   

11.
The effects of neonatal administration of immunogenic peptides on subsequent T and B cell function were tested using defined T and B cell peptide epitopes from the circumsporozoite (CS) protein of the human malaria parasite, Plasmodium falciparum. We observed that neonatal exposure of responder strain mice to either of the two major murine T sites on the CS protein resulted in specific tolerance of both helper and proliferating T cells. One of these T sites, (NANP)n, is also the immunodominant B epitope on the CS protein. We took advantage of this fact to directly compare the effects of neonatal peptide administration on B and T cell function and observed that mice whose helper and proliferating T cells were tolerant to (NANP)n nevertheless produced normal levels of anti-(NANP)n antibodies after immunization with keyhole limpet hemocyanin-(NANP)n. Our results demonstrate differential susceptibility of the Th cells and B cells to toleragens and suggest that self-tolerance to peptide epitopes during the neonatal period reflects predominantly Th cell tolerance.  相似文献   

12.
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.  相似文献   

13.
Circumsporozoite, a predominant surface protein, is involved in invasion of liver cells by Plasmodium sporozoites, which leads to malaria. We have previously reported that the amino terminus region (amino acids 27-117) of P. falciparum circumsporozoite protein plays a critical role in the invasion of liver cells by the parasite. Here we show that invasion-blocking antibodies are induced by a polypeptide encoding these 91 amino acids, only when it is presented in the absence of the rest of the protein. This suggests that when present in the whole protein, the amino terminus remains immunologically cryptic. A single reactive epitope was identified and mapped to a stretch of 21 amino acids from position 93 to 113. The epitope is configurational in nature, since its recognition was affected by deleting as little as 3 amino acids from either end of the 21-residue peptide. Lysine 104, the only known polymorphic position in the epitope, affected its recognition by the antibodies, and its conversion to leucine in the protein led to a substantial loss of binding activity of the protein to the hepatocytes. This indicated that in the protein, the epitope serves as a binding ligand and facilitates the interaction between sporozoite and hepatic cells. When considered along with the observation that in its native state this motif is immunologically unresponsive, we suggest that hiding functional moieties of the protein from the immune system is an evasion strategy to preserve liver cell binding function and may be of importance in designing anti-sporozoite vaccines.  相似文献   

14.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

15.
Allergen-specific immunotherapy using peptides is an efficient treatment for allergic diseases. Recent studies suggest that the induction of CD4+ regulatory T (Treg) cells might be associated with the suppression of allergic responses in patients after allergen-specific immunotherapy. Our aim was to identify MHC class II promiscuous T cell epitopes for the birch pollen allergen Bet v 1 capable of stimulating Treg cells with the purpose of inhibiting allergic responses. Ag-reactive CD4+ T cell clones were generated from patients with birch pollen allergy and healthy volunteers by in vitro vaccination of PBMC using Bet v 1 synthetic peptides. Several CD4+ T cell clones were induced by using 2 synthetic peptides (Bet v 1(141-156) and Bet v 1(51-68)). Peptide-reactive CD4+ T cells recognized recombinant Bet v 1 protein, indicating that these peptides are produced by the MHC class II Ag processing pathway. Peptide Bet v 1(141-156) appears to be a highly MHC promiscuous epitope since T cell responses restricted by numerous MHC class II molecules (DR4, DR9, DR11, DR15, and DR53) were observed. Two of these clones functioned as typical Treg cells (expressed CD25, GITR, and Foxp3 and suppressed the proliferation and IL-2 secretion of other CD4+ T cells). Notably, the suppressive activity of these Treg cells required cell-cell contact and was not mediated through soluble IL-10 or TGF-beta. The identified promiscuous MHC class II epitope capable of inducing suppressive Treg responses may have important implication for the development of peptide-based Ag-specific immunotherapy to birch pollen allergy.  相似文献   

16.
Synthetic peptide constructs containing a limited number of epitopes are being currently investigated as subunit vaccines against a variety of pathogens. However, because of widespread nonresponsiveness to most such constructs, possibly attributable to MHC restriction, the choice of appropriate carrier molecules to enhance immunogenicity of peptides constitutes an important and essential aspect of designing synthetic immunogens for human use. Widely used vaccines such as tetanus toxoid (TT) have not been uniformly effective as carrier proteins because of the phenomenon of epitope-specific suppression in which induction of an immune response against a synthetic peptide conjugated to TT is prevented by preexisting immunity to TT. Recently, T cell determinants that can be recognized in the context of several class II MHC molecules have been identified in tetanus toxin as well as in the circumsporozoite protein of a human malarial parasite, Plasmodium falciparum. Such determinants can be potentially used to circumvent the problem of epitope-specific suppression. In the present study we evaluated two such T cell determinants, viz., tt830-844 from tetanus toxin and CST3 from the malarial parasite, for their ability to help induce a boostable antibody response and to overcome genetic nonresponsiveness to a synthetic 20-residue construct containing a B cell and an overlapping T cell epitope from a major merozoite surface protein of P. falciparum. Our data provide support for the view that widely recognized T cell determinants may be used as universal carrier molecules for general vaccination.  相似文献   

17.
T cell responses to Ags involve recognition of selected peptide epitopes contained within the antigenic protein. In this report, we describe a new approach for direct identification of CD4+ T cell epitopes of complex Ags that uses human class II tetramers to identify reactive cells. With a panel of 60 overlapping peptides covering the entire sequence of the VP16 protein, a major Ag for HSV-2, we generated a panel of class II MHC tetramers loaded with peptide pools that were used to stain peripheral lymphocytes of an HSV-2 infected individual. With this approach, we identified four new DRA1*0101/DRB1*0401- and two DRA1*0101/DRB1*0404-restricted, VP16-specific epitopes. By using tetramers to sort individual cells, we easily obtained a large number of clones specific to these epitopes. Although DRA1*0101/DRB1*0401 and DRA1*0101/DRB1*0404 are structurally very similar, nonoverlapping VP16 epitopes were identified, illustrating high selectivity of individual allele polymorphisms within common MHC variants. This rapid approach to detecting CD4+ T cell epitopes from complex Ags can be applied to any known Ag that gives a T cell response.  相似文献   

18.
Susceptibility to experimental collagen-induced arthritis in rodents is dependent on MHC class II elements to bind peptides from the type II collagen (CII) molecule. Although a substantial body of data has been reported in mice defining these peptide Ags, little has been reported in rats. In this study, we investigate the locations and sequences of CII peptides, which are bound by RT1(u) molecules, expressed by diabetic-resistant, arthritis-susceptible Biobreeding rats, and, in turn, stimulate CII-specific T cells. By using overlapping and substituted peptide homologues of CII, we have identified and characterized an immunodominant and five subdominant epitopes on CII, which stimulate RT1(u)-restricted T cell proliferation. The immunodominant epitope, CII (186-192), contains a QGPRG core sequence, which was found in a subdominant epitope CII (906-916). Similar sequences containing single conservative substitutions were identified in three other epitopes. One, CII (263-272), contained a conservatively substituted R-->K substitution, whereas CII (880-889) and CII (906-916) contained nonconservative substitutions, i.e., P-->D and R-->M, respectively. Homologue peptides containing these sequences stimulated T cell proliferative responses, although less intensely than peptides containing CII (186-192). Substituting QGR residues in the QGPRG core with alanine, isoleucine, or proline reduced proliferation, as did substituting flanking E and G residues at the N terminus and E at the C terminus. Collectively, these data indicate that RT1(u)-restricted immunodominant and several subdominant epitopes on CII often share a QGPRG-like motif, with conservative substitutions present at either P or R positions. This motif is similar to one recognized by collagen-induced arthritis-susceptible HLA-DR1- and HLA-DR4-transgenic mice.  相似文献   

19.
The CTL response to SV40 in C3H/HeJ mice is directed against the tumor (T) Ag and is H-2Kk restricted. CTL specific for both the amino terminus (residues 1-271) and the carboxyl terminus (residues 512-708) of the T Ag molecule have been detected, and we have previously cloned CTL of both specificities. In this paper we show that the panel of 10 CTL clones specific for the C-terminal region includes clones specific for three different epitopes, termed C1, C2, and C3. Epitopes C1 and C2 are conserved in the T Ag of the related papova viruses BK and SA12, and only epitopes C2 and C3 are present on SV40 transformed targets bearing the Kk mutant Kkml. Epitopes C1 and C2 were mapped to residues 563-576 by using in-frame deletion mutants of SV40 T antigen, and all clones specific for these two epitopes can lyse Kk bearing target cells in the presence of a synthetic peptide comprising residues 559-576. Kk and Kkml differ at residue 152, which is located in the Ag-binding pocket. Because epitopes C1 and C2 can be formed by the same antigenic peptide, but epitope C1 is not present on SV40 transformed Kkml cells, epitopes C1 and C2 must differ in the contribution made by residue 152 of the MHC class I molecule. These data show that CTL epitopes on transformed cells can be made up of Ag fragments, and strengthen the idea that this is a general phenomenon for both class I and class II restricted T cell epitopes.  相似文献   

20.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号