首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Calcium signaling is known to be important for regulating the guidance of migrating neurons, yet the molecular mechanisms underlying this process are not well understood. We have found that two different voltage-gated calcium channels are important for the accurate guidance of postembryonic neuronal migrations in the nematode Caenorhabditis elegans. In mutants carrying loss-of-function alleles of the calcium channel gene unc-2, the touch receptor neuron AVM and the interneuron SDQR often migrated inappropriately, leading to misplacement of their cell bodies. However, the AVM neurons in unc-2 mutant animals extended axons in a wild-type pattern, suggesting that the UNC-2 calcium channel specifically directs migration of the neuronal cell body and is not required for axonal pathfinding. In contrast, mutations in egl-19, which affect a different voltage-gated calcium channel, affected the migration of the AVM and SDQR bodies, as well as the guidance of the AVM axon. Thus, cell migration and axonal pathfinding in the AVM neurons appear to involve distinct calcium channel subtypes. Mutants defective in the unc-43/CaM kinase gene showed a defect in SDQR and AVM positioning that resembled that of unc-2 mutants; thus, CaM kinase may function as an effector of the UNC-2-mediated calcium influx in guiding cell migration.  相似文献   

2.
Migrating neuronal cells are directed to their final positions by an array of guidance cues. It has been shown that guidance molecules such as UNC-6/Netrin and SLT-1/Slit play a major role in controlling cell and axon migrations along the dorsal-ventral body axis. Much less is known, however, about the mechanisms that mediate migration along the anterior-posterior (AP) body axis. Recent research in Caenorhabditis elegans has uncovered an important role of the Wnt family of signalling molecules in controlling AP-directed neuronal cell migration and polarity. A common theme that emerges from these studies is that multiple Wnt proteins function in parallel as instructive cues or permissive signals to control neuronal patterning along this major body axis.  相似文献   

3.
Xu Y  Ren XC  Quinn CC  Wadsworth WG 《Genetics》2011,189(3):899-906
Gradients of acetylcholine can stimulate growth cone turning when applied to neurons grown in culture, and it has been suggested that acetylcholine could act as a guidance cue. However, the role acetylcholine plays in directing axon migrations in vivo is not clear. Here, we show that acetylcholine positively regulates signaling pathways that mediate axon responses to guidance cues in Caenorhabditis elegans. Mutations that disrupt acetylcholine synthesis, transportation, and secretion affect circumferential axon guidance of the AVM neuron and in these mutants exogenously supplied acetylcholine improves AVM circumferential axon guidance. These effects are not observed for the circumferential guidance of the DD and VD motor neuron axons, which are neighbors of the AVM axon. Circumferential guidance is directed by the UNC-6 (netrin) and SLT-1 (slit) extracellular cues, and exogenously supplied acetylcholine can improve AVM axon guidance in mutants when either UNC-6- or SLT-1-induced signaling is disrupted, but not when both signaling pathways are perturbed. Not in any of the mutants does exogenously supplied acetylcholine improve DD and VD axon guidance. The ability of acetylcholine to enhance AVM axon guidance only in the presence of either UNC-6 or SLT-1 indicates that acetylcholine potentiates UNC-6 and SLT-1 guidance activity, rather than acting itself as a guidance cue. Together, our results show that for specific neurons acetylcholine plays an important role in vivo as a modulator of axon responses to guidance cues.  相似文献   

4.
Although many molecules are necessary for neuronal cell migrations in C. elegans, no guidance cues are known to be essential for any of these cells to migrate along the anteroposterior (AP) axis. We demonstrate that the fibroblast growth factor (FGF) EGL-17, an attractant for the migrating sex myoblasts (SMs), repels the CANs, a pair of neurons that migrate posteriorly from the head to the center of the embryo. Although mutations in genes encoding EGL-17/FGF and a specific isoform of its receptor EGL-15/FGFR had little effect on CAN migration, they enhanced the CAN migration defects caused by mutations in other genes. Two cells at the anterior end of the embryo express EGL-17/FGF, raising the possibility that EGL-17/FGF functions as a repellent for migrating CANs. Consistent with this hypothesis, ectopic expression of EGL-17/FGF shifted the final CAN cell positions away from these novel sites of expression. Cell-specific rescue experiments demonstrated that EGL-15/FGFR acts in the CANs to promote their migration. We also found that the tyrosine phosphatase receptor CLR-1 regulates CAN migration by inhibiting EGL-15/FGFR signaling, and that the FGFR adaptor protein SEM-5/GRB2 may mediate EGL-15/FGFR signaling in CAN migration. Thus, EGL-17/FGF signaling through an EGL-15/FGFR isoform and possibly SEM-5/GRB2 mediates both attraction of the SMs and repulsion of the CANs. This study also raises the possibility that several guidance cues regulate cell migrations along the C. elegans AP axis, and their role in these migrations may only be revealed in sensitized genetic backgrounds.  相似文献   

5.
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.  相似文献   

6.
7.
The transmembrane protein MIG-13 is a key regulator required for anterior migration of neural cells in Caenorhabditis elegans, but the signaling mechanisms involved remain unknown. Here, we isolated a suppressor mutation in the unc-71/adm-1 gene, which rescued the AVM neuron migration defect in mig-13 mutants. Genetic analyses revealed that UNC-71 at least partly acts downstream of MIG-13 and has an inhibitory effect on the anterior cell migration. The unc-71 mutation also rescued the anterior migration defect of AVM neuron in src-1 mutants. These findings suggest that MIG-13 controls anteroposterior cell migration by interacting with UNC-71 and SRC-1 in C. elegans.  相似文献   

8.
The netrin guidance cue, UNC-6, and the netrin receptors, UNC-5 and UNC-40, guide SDQR cell and axon migrations in C. elegans. In wild-type larvae, SDQR migrations are away from ventral UNC-6-expressing cells, suggesting that UNC-6 repels SDQR. In unc-6 null larvae, SDQR migrations are towards the ventral midline, indicating a response to other guidance cues that directs the migrations ventrally. Although ectopic UNC-6 expression dorsal to the SDQR cell body would be predicted to cause ventral SDQR migrations in unc-6 null larvae, in fact, more migrations are directed dorsally, suggesting that SDQR is not always repelled from the dorsal source of UNC-6. UNC-5 is required for dorsal SDQR migrations, but not for the ventral migrations in unc-6 null larvae. UNC-40 appears to moderate both the response to UNC-6 and to the other cues. Our results show that SDQR responds to multiple guidance cues and they suggest that, besides UNC-6, other factors influence whether an UNC-6 responsive cell migrates toward or away from an UNC-6 source in vivo. We propose that multiple signals elicited by the guidance cues are integrated and interpreted by SDQR and that the response to UNC-6 can change depending on the combination of cues encountered during migration. These responses determine the final dorsoventral position of the SDQR cell and axon.  相似文献   

9.
BACKGROUND: Axon migrations are guided by extracellular cues that can act as repellants or attractants. However, the logic underlying the manner through which attractive and repulsive responses are determined is unclear. Many extracellular guidance cues, and the cellular components that mediate their signals, have been implicated in both types of responses. RESULTS: Genetic analyses indicate that MIG-10/RIAM/lamellipodin, a cytoplasmic adaptor protein, functions downstream of the attractive guidance cue UNC-6/netrin and the repulsive guidance cue SLT-1/slit to direct the ventral migration of the AVM and PVM axons in C. elegans. Furthermore, overexpression of MIG-10 in the absence of UNC-6 and SLT-1 induces a multipolar phenotype with undirected outgrowths. Addition of either UNC-6 or SLT-1 causes the neurons to become monopolar. Moreover, the ability of UNC-6 or SLT-1 to direct the axon ventrally is enhanced by the MIG-10 overexpression. We also demonstrate that an interaction between MIG-10 and UNC-34, a protein that promotes actin-filament extension, is important in the response to guidance cues and that MIG-10 colocalizes with actin in cultured cells, where it can induce the formation of lamellipodia. CONCLUSIONS: We conclude that MIG-10 mediates the guidance of AVM and PVM axons in response to the extracellular UNC-6 and SLT-1 guidance cues. The attractive and repulsive guidance cues orient MIG-10-dependant axon outgrowth to cause a directional response.  相似文献   

10.
The weaver mutation impairs migration of the cerebellar granular neurons and induces neuronal death during the first two weeks of postnatal life. To elucidate the molecular mechanisms for the impaired neuronal migration, we investigated the rescue mechanisms of the weaver (wv/wv) granule neurons in vitro. We found that Fab2 fragments of antibodies against a neurite outgrowth domain of the B2 chain of laminin enhanced neurite outgrowth and neuronal migration of the weaver granule neurons on a laminin substratum and in the established cable culture system. The rescue of the weaver granule neurons by antibodies against the B2 chain of laminin may result from the neutralizing effect of these antibodies against the elevated B2 chain levels of the weaver brain. The L-type calcium channel blocker, verapamil (1-5 microM), also rescued the weaver granule neurons. High concentrations of MK-801 (10- 20 microM), a glutamate receptor antagonist and voltage-gated calcium channel blocker, rescued the weaver granule neurons similar to verapamil, but low concentrations of MK-801 (1 microM) had no rescue effect. Simultaneous patch-clamp studies indicated that the weaver granule neurons did not express functional N-methyl-D-aspartate receptors further indicating that the rescue of the weaver granule neurons by MK-801 resulted from its known inhibition of voltage-gated calcium channels. The present results indicate that antibodies against the B2 chain of laminin, verapamil, and high concentrations of MK-801 protect the weaver granule neurons from the otherwise destructive action of the weaver gene. Thus, both the laminin system and calcium channel function contribute to the migration deficiency of the weaver granule neurons.  相似文献   

11.
L R Garcia  P Mehta  P W Sternberg 《Cell》2001,107(6):777-788
We demonstrate through cell ablation, molecular genetic, and pharmacological approaches that during C. elegans male mating behavior, the male inserts his copulatory spicules into the hermaphrodite by regulating periodic and prolonged spicule muscle contractions. Distinct cholinergic neurons use different ACh receptors and calcium channels in the spicule muscles to mediate these contractile behaviors. The PCB and PCC sensory neurons facilitate periodic contraction through muscle-encoded UNC-68 ryanodine receptor calcium channels. The SPC motor neurons trigger prolonged contraction through EGL-19 L-type voltage-gated calcium channels. The male gonad then lengthens the duration of EGL-19-mediated prolonged muscle contraction. This regulation of muscle contraction provides a paradigm to explain how animals initiate, monitor, and maintain a behavioral motor program.  相似文献   

12.
The cytoarchitecture of the hindbrain results from precise and co-ordinated sequences of neuronal migrations. Here, we show that reelin, an extracellular matrix protein involved in neuronal migration during CNS development, is necessary for an early, specific step in the migration of several hindbrain nuclei. We identified two cell populations not previously known to be affected in reeler mutants that show a common migratory defect: the olivocochlear efferent neurons and the facial visceral motor nucleus. In control embryos, these cells migrate first toward a lateral position within the neural tube, and then parallel to the glial cell processes, to a ventral position where they settle close to the pial surface. In reeler mutants, the first migration is not affected, but the neurons are unable to reach the pial surface and remain in an ectopic position. Indeed, this is the first evidence that the migration of specific hindbrain nuclei can be divided into two parts: a reelin-independent and a reelin-dependent migration. We also show that reelin is expressed at high levels at the final destination of the migratory process, while the reelin intracellular effector Dab1 was expressed by cell groups that included the two populations affected. Mice mutant at the Dab1 locus, called scrambler, exhibit the same phenotype, a failure of final migration. However, examination of mice lacking both reelin receptors, ApoER2 and VLDLR, did not reveal the same phenotype, suggesting involvement of an additional reelin-binding receptor. In the hindbrain, reelin signaling might alter the adhesive properties of efferent neurons and their ability to respond to directional cues, as has been suggested for the migration of olfactory bulb precursors.  相似文献   

13.
Voltage-gated cation channels regulate neuronal excitability through selective ion flux. NALCN, a member of a protein family that is structurally related to the α1 subunits of voltage-gated sodium/calcium channels, was recently shown to regulate the resting membrane potentials by mediating sodium leak and the firing of mouse neurons. We identified a role for the Caenorhabditis elegans NALCN homologues NCA-1 and NCA-2 in the propagation of neuronal activity from cell bodies to synapses. Loss of NCA activities leads to reduced synaptic transmission at neuromuscular junctions and frequent halting in locomotion. In vivo calcium imaging experiments further indicate that while calcium influx in the cell bodies of egg-laying motorneurons is unaffected by altered NCA activity, synaptic calcium transients are significantly reduced in nca loss-of-function mutants and increased in nca gain-of-function mutants. NCA-1 localizes along axons and is enriched at nonsynaptic regions. Its localization and function depend on UNC-79, and UNC-80, a novel conserved protein that is also enriched at nonsynaptic regions. We propose that NCA-1 and UNC-80 regulate neuronal activity at least in part by transmitting depolarization signals to synapses in C. elegans neurons.  相似文献   

14.
Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1- and dsh-1-dependent manner. Our findings suggest a novel role for a PCP-like pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation.  相似文献   

15.
Voltage-gated cation channels regulate neuronal excitability through selective ion flux. NALCN, a member of a protein family that is structurally related to the α1 subunits of voltage-gated sodium/calcium channels, was recently shown to regulate the resting membrane potentials by mediating sodium leak and the firing of mouse neurons. We identified a role for the Caenorhabditis elegans NALCN homologues NCA-1 and NCA-2 in the propagation of neuronal activity from cell bodies to synapses. Loss of NCA activities leads to reduced synaptic transmission at neuromuscular junctions and frequent halting in locomotion. In vivo calcium imaging experiments further indicate that while calcium influx in the cell bodies of egg-laying motorneurons is unaffected by altered NCA activity, synaptic calcium transients are significantly reduced in nca loss-of-function mutants and increased in nca gain-of-function mutants. NCA-1 localizes along axons and is enriched at nonsynaptic regions. Its localization and function depend on UNC-79, and UNC-80, a novel conserved protein that is also enriched at nonsynaptic regions. We propose that NCA-1 and UNC-80 regulate neuronal activity at least in part by transmitting depolarization signals to synapses in C. elegans neurons.  相似文献   

16.
Three known genes guide circumferential migrations of pioneer axons and mesodermal cells on the nematode body wall. unc-5 affects dorsal migrations, unc-40 primarily affects ventral migrations, and unc-6 affects migrations in both directions. Circumferential movements still occur, but are misdirected whereas longitudinal movements are normal in these mutants. Pioneer growth cones migrating directly on the epidermis are affected; growth cones migrating along established axon fascicles are normal. Thus these genes affect cell guidance and not cell motility per se. We propose that two opposite, adhesive gradients guide circumferential migrations on the epidermis. unc-5, unc-6, and unc-40 may encode these adhesion molecules or their cellular receptors. Neurons have access to the basal lamina and the basolateral surfaces of the epidermis, but mesodermal cells contact only the basal lamina. These genes probably identify molecular cues on the basal lamina that guide mesodermal migrations. The same basal lamina cues, or perhaps related molecules on the epidermal cell surfaces, guide pioneer neurons.  相似文献   

17.
Neurons destined to form several precerebellar nuclei are generated in the dorsal neuroepithelium (rhombic lip) of caudal hindbrain. They form two ventrally directed migratory streams, which behave differently. While neurons in the superficial migration migrate in a subpial position and cross the midline to settle into the contralateral hindbrain, neurons in the olivary migration travel deeper in the parenchyma and stop ipsilaterally against the floor plate. In the present study, we compared the behavior of the two neuronal populations in an organotypic culture system that preserves several aspects of their in vivo environment. Both migrations occurred in mouse hindbrain explants dissected at E11.5 even when the floor plate was ablated at the onset of the culture period, indicating that they could rely on dorsoventral cues already distributed in the neural tube. Nevertheless, the local constraints necessary for the superficial migration were more specific than for the olivary migration. Distinct chemoattractive and chemorespulsive signal were found to operate on the migrations. The floor plate exhibited a strong chemoattractive influence on both migrations, which deviated from their normal path in the direction of ectopic floor plate fragments. It was also found to produce a short-range stop signal and to induce inferior olive aggregation. The ventral neural tube was also found to inhibit or slow down the migration of olivary neurons. Interestingly, while ectopic sources of netrin were found to influence both migrations, this effect was locally modulated and affected differentially the successive phases of migration. Consistent with this observation, while neurons in the superficial migration expressed the Dcc-netrin receptor, the migrating olivary neurons did not express Dcc before they reached the midline. Our observations provide a clearer picture of the hierarchy of environmental cues that influence the morphogenesis of these precerebellar nuclei.  相似文献   

18.
Mutations affecting embryonic cell migrations in Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Four recessive mutations that affect long-range embryonic migration of the two canal-associated neurons (CANs) in C. elegans were isolated and characterized with the goal of identifying genes involved in control of directed cell movement. Mutant animals were identified initially by their "withered" tails, a phenotype associated with abnormal CAN migration; the mutants were then analyzed for abnormal cell migrations by Nomarski microscopy. Based on genetic complementation tests, the mutations were assigned to four different loci, two new (mig-10 III, mig-11 III) and two previously identified (unc-39 V, vab-8 V). Mutations at all four loci affect CAN migration with high to moderate penetrance (the percentage of mutant animals that exhibit the phenotype). In addition, two other bilaterally symmetric pairs of neurons (ALM and HSN), the mesoblast M, and a pair of coelomocyte mother cells are affected by one or more of the mutations, generally with lower penetrance. With the exceptions of HSN and the right coelomocyte mother cell, which occasionally migrate beyond their normal destinations, the cells affected appear to migrate either incompletely or not at all. All the migration phenotypes show incomplete penetrance and variable expressively, although genetic tests suggest that mutations at mig-10 and vab-8 result in complete or nearly complete loss of gene function. The variability in mutant phenotypes allowed tests for interdependence of several of the affected migrations; all those analyzed appeared independent of one another. The possible nature of the mutant defects and possible roles of these four loci in cell migration are discussed.  相似文献   

19.
20.
The generation and control of cell polarity is a fundamental mechanism for directed migration of the cell. In developing neurons, the axonal growth cone recognizes environmental molecular cues and migrates toward its correct target, thereby forming neuronal networks. The spatial information provided by environmental cues directs axon growth and guidance through generating polarity of intracellular signals and cytoskeletal organization in the growth cone. This polarization process is dependent on lipid rafts, specialized microdomains in the cell membrane. Lipid rafts in specific regions of the growth cone are involved in axon growth and guidance. For example, forward migration of the growth cone requires raft membranes in its leading front. Recent experiments have suggested that lipid rafts function as a platform for localized signaling downstream of adhesion molecules and guidance receptors. The rafts assemble into an active membrane domain that captures and reorganizes the cytoskeletal machinery. In this way, the spatial control of signaling through raft membranes plays a critical role in translating extracellular information into polarized motility of the growth cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号