共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen-sensing neurons in the central nervous system. 总被引:9,自引:0,他引:9
This mini-review summarizes the present knowledge regarding central oxygen-chemosensitive sites with special emphasis on their function in regulating changes in cardiovascular and respiratory responses. These oxygen-chemosensitive sites are distributed throughout the brain stem from the thalamus to the medulla and may form an oxygen-chemosensitive network. The ultimate effect on respiratory or sympathetic activity presumably depends on the specific neural projections from each of these brain stem oxygen-sensitive regions as well as on the developmental age of the animal. Little is known regarding the cellular mechanisms involved in the chemotransduction process of the central oxygen sensors. The limited information available suggests some conservation of mechanisms used by other oxygen-sensing systems, e.g., carotid body glomus cells and pulmonary vascular smooth muscle cells. However, major gaps exist in our understanding of the specific ion channels and oxygen sensors required for transducing central hypoxia by these central oxygen-sensitive neurons. Adaptation of these central oxygen-sensitive neurons during chronic or intermittent hypoxia likely contributes to responses in both physiological conditions (ascent to high altitude, hypoxic conditioning) and clinical conditions (heart failure, chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, hypoventilation syndromes). This review underscores the lack of knowledge about central oxygen chemosensors and highlights real opportunities for future research. 相似文献
2.
3.
P. Siaud O. Manzoni M. Balmefrezol G. Barbanel I. Assenmacher Dr. G. Alonso 《Cell and tissue research》1989,255(1):107-115
Summary The localization and distribution of prolactinlike-immunoreactive perikarya and nerve fibers in the rat central nervous system have been studied by a preembedding immunoperoxidase method using well-characterized specific immunsera to rat prolactin. Although the localization of labeled neuronal structures in a number of brain areas correlates with the data of previous immunocytochemical studies, we found prolactin-immunoreactive neurons in various regions not previously reported. In untreated animals, the highest concentrations of prolactinfibers were observed: (i) in the external layers of the median eminence where they exhibited close contact with blood vessels, and (ii) in the bed nucleus of the stria terminalis and in the central nucleus of the amygdala where they closely surrounded unlabeled perikarya. Dense networks of finely varicose prolactin fibers were also observed in the organum vasculosum of the lamina terminalis, in the subfornical organ, and in the dorsolateral regions of the medulla oblongata and the spinal cord. Lastly, a number of large, varicose, intensely immunoreactive fibers were found in the olfactory bulb, the cingulum, and the periventricular regions of the hypothalamus and central gray, whereas isolated fibers could be detected in the caudate nucleus and in the cerebral cortex. In animals treated with colchicine, prolactin-immunoreactive perikarya were essentially located within the periventricular and perifornical regions of the hypothalamus, and within the bed nucleus of the stria terminalis. Although corticotropin (ACTH 17-39)-immunoreactive fibers could be detected in several regions found to contain prolactin fibers, the distribution and organization of both fiber types clearly differed in numerous brain regions, and the regions containing the corresponding perikarya did not overlap. The ultrastructural organization of the prolactin-immunoreactive fibers revealed by electronmicroscopic immunocytochernistry in various brain regions, allowed the characterization of two main types of prolactinergic neurons including: (i) endocrine neurons, whose axons terminated in close vicinity to portal blood vessels in the external median eminence, and (ii) neurons projecting to extrahypothalamic regions, whose axons formed typical synaptic connections with unidentified neuronal units. 相似文献
4.
We have determined the biochemical and immunocytochemical localization of the heterogeneous microtubule-associated protein tau using a monoclonal antibody that binds to all of the tau polypeptides in both bovine and rat brain. Using immunoblot assays and competitive enzyme-linked immunosorbent assays, we have shown tau to be more abundant in bovine white matter extracts and microtubules than in extracts and microtubules from an enriched gray matter region of the brain. On a per mole basis, twice-cycled microtubules from white matter contained three times more tau than did twice-cycled microtubules from gray matter. Immunohistochemical studies that compared the localization of tau with that of MAP2 and tubulin demonstrated that tau was restricted to axons, extending the results of the biochemical studies. Tau localization was not observed in glia, which indicated that, at least in brain, tau is neuron specific. These observations indicate that tau may help define a subpopulation of microtubules that is restricted to axons. Furthermore, the monoclonal antibody described in this report should prove very useful to investigators studying axonal sprouting and growth because it is an exclusive axonal marker. 相似文献
5.
6.
Navarro A Ordóñez C Martínez E Pérez C Astudillo A Tolivia J 《Histology and histopathology》2008,23(8):995-1001
Apolipoprotein D (apo D), a lipocalin transporter of small hydrophobic molecules could play an important role in several neurodegenerative diseases. However, its role in those diseases remains unclear. There has been reported increments of apo D in relation with different neuropathologic diseases. Recently, we reported the absence of apo D in neurons of substantia nigra which can contribute to the lability of neurons to oxidative damage. In order to determine the relationship between apo D expression and neuronal death, we studied the expression of apo D in various regions of human brains from patients without any neurological or psychological disorders, in relation with the neuronal damage revealed by Fluoro-Jade B staining. The absence of expression for apo D in injured neurons and the negative staining for Fluoro-Jade B of neurons that express apo D was observed in all sections studied. These findings are in accordance with the role possibly played by apo D in the neuroprotection of the nervous system. 相似文献
7.
The ability of the soma of a spinal dorsal horn neuron, a spinal ventral horn neuron (presumably a motoneuron), and a hippocampal pyramidal neuron to generate action potentials was studied using patch-clamp recordings from rat spinal cord slices, the "entire soma isolation" method, and computer simulations. By comparing original recordings from an isolated soma of a dorsal horn neuron with simulated responses, it was shown that computer models can be adequate for the study of somatic excitability. The modeled somata of both spinal neurons were unable to generate action potentials, showing only passive and local responses to current injections. A four- to eightfold increase in the original density of Na(+) channels was necessary to make the modeled somata of both spinal neurons excitable. In contrast to spinal neurons, the modeled soma of the hippocampal pyramidal neuron generated spikes with an overshoot of +9 mV. It is concluded that the somata of spinal neurons cannot generate action potentials and seem to resist their propagation from the axon to dendrites. In contrast, the soma of the hippocampal pyramidal neuron is able to generate spikes. It cannot initiate action potentials in the intact neurons, but it can support their back-propagation from the axon initial segment to dendrites. 相似文献
8.
Courad JP Besse D Delchambre C Hanoun N Hamon M Eschalier A Caussade F Cloarec A 《Life sciences》2001,69(12):1455-1464
Based on the evidence that the antinociceptive effects of acetaminophen could be mediated centrally, tissue distribution of the drug after systemic administration was determined in rat anterior and posterior cortex, striatum, hippocampus, hypothalamus, brain stem, ventral and dorsal spinal cord. In a first study, rats were treated with acetaminophen at 100, 200 or 400 mg/kg per os (p.o.), and drug levels were determined at 15, 45, 120, 240 min by high performance liquid chromatography (HPLC) coupled with electrochemical detection (ED). In a second study, 45 min after i.v. administration of [3H]acetaminophen (43 microCi/rat; 0.65 microg/kg), radioactivity was counted in the same structures, plus the septum, the anterior raphe area and the cerebellum. Both methods showed a homogeneous distribution of acetaminophen in all structures studied. Using the HPLC-ED method, maximal distribution appeared at 45 min. Tissue concentrations of acetaminophen then decreased rapidly except at the dose of 400 mg/kg where levels were still high 240 min after administration, probably because of the saturation of clearance mechanisms. Tissue levels increased with the dose up to 200 mg/kg and then leveled off up to 400 mg/kg. Using the radioactive method, it was found that the tissue/blood ratio was remarkably constant throughout the CNS, ranking from 0.39 in the dorsal spinal cord to 0.46 in the cerebellum. These results, indicative of a massive impregnation of all brain regions, are consistent with a central antinociceptive action of acetaminophen. 相似文献
9.
Buono Pasqualina D'Armiento Francesco P. Terzi Giuseppe Alfieri Andreina Salvatore Francesco 《Brain Cell Biology》2001,30(12):957-965
We have analyzed the distribution of aldolase A and C mRNAs and proteins in various areas of the human brain using Northern blot analyses and immunohistochemistry. Aldolase A mRNA expression was higher than aldolase C mRNA expression in all areas of the brain examined. Aldolase C mRNA expression was highest in the cerebellum. Aldolase C protein was present in well-delimited regions of the CNS, and was distributed in stripes in the Purkinje cell layer of the cerebellum, in the inferior olives and in the sensory neurons of the posterior horn of the spinal cord. The novel finding of aldolase C in well-delimited cell compartments of the human cerebellum and in several other areas of the CNS lends weight to the hypothesis that this protein exerts other functions (e.g. sensory transmission) besides those characteristic of a glycolytic enzyme. 相似文献
10.
Homogenates of cricket (Acheta domesticus) central nervous system (CNS) specifically bind the potent muscarinic ligand [3H]-QNB. Binding assay and pharmacologic data indicate that the cricket CNS contains a high density of muscarinic cholinergic binding sites. These sites appear to be a unique class of invertebrate cholinergic receptor with properties distinct from those of previously described nicotinic receptors. 相似文献
11.
12.
Silver impregnation studies in chick embryos have shown that, by the 2nd day of incubation, the earliest neurofibrillar differentiation occurred in neuroblasts located at the diencephalic-mesencephalic junction and in the rhombencephalon; some of these neuroblasts were believed to become reticular neurons. Since calretinin, a cytosolic calcium-binding protein of the "E-F hand" family, occurs in reticular neurons, the present study investigated immunohistochemically whether the early differentiating reticular neurons are also the first neurons to express this marker during chick embryo development. The first calretinin-immunoreactive neuroblasts appeared at stage 11 (40-45 h of incubation according to the series of Hamburger and Hamilton), and were located in the basal plate of the diencephalic-mesencephalic junction and of rhombomeres adjacent to the otic placode and in the alar plate and intermediate zone of the cervical spinal cord. In bromodeoxyuridine-injected embryos, these earliest calretinin-immunoreactive neurons were shown to express the calcium-binding protein 11-16 h after their last mitosis. By stage 11 up to the 14th day of incubation (stage 40), the calretinin-immunostained neurons increased in number and ultimately formed a chemically defined subset of neurons belonging to the tegmental reticular formation and raphe region of the brainstem. In the meantime, early calretinin-immunostained nerve processes were shown to form two conspicuous longitudinal bundles which run in the ventral and lateral margins of the brainstem and spinal cord. 相似文献
13.
DNA content of neurons in rat central nervous system 总被引:3,自引:0,他引:3
14.
The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns of several identified single afferent and efferent nerve fibres (motoneuron axons) were extracted from multi-unit impulse patterns, and human CNS functions could be analyzed under physiologic and pathophysiologic conditions. With our discovery of premotor spinal oscillators it became possible to judge upon CNS neuronal network organization based on the firing patterns of these spinal oscillators and their driving afferents. Since motoneurons fire occasionally for low activation and oscillatory for high activation, the coherent organization of subnetworks to generate macroscopic function is very complex and for the time being, may be best described by the theory of coordination dynamics. Since oscillatory firing has also been observed by us in single motor unit firing patterns measured electromyographically, it seems possible to follow up therapeutic intervention in patients with spinal cord and brain lesions not only based on the activity levels and phases of motor programs during locomotion but also based on the physiologic and pathophysiologic firing patterns and recruitment of spinal oscillators. The improvement of the coordination dynamics of the CNS can be partly measured directly by rhythmicity upon the patient performing rhythmic movements coordinated up to milliseconds. Since rhythmic dynamic, coordinated, stereotyped movements are mainly located in the spinal cord and only little supraspinal drive is necessary to initiate, maintain, and terminate them, rhythmic, dynamic, coordinated movements were used in therapy to enforce reorganization of the lesioned CNS by improving the self-organization and relative coordination of spinal oscillators (and their interactions with occasionally firing motoneurons) which became pathologic in their firing following CNS lesion. Paraparetic, tetraparetic spinal cord and brain-lesioned patients re-learned running and other movements by an oscillator formation and coordination dynamic therapy. Our development in neurorehabilitation is in accordance with those of theoretical and computational neurosciences which deal with the self-organization of neuronal networks. In particular, jumping on a springboard 'in-phase' and in 'anti-phase' to re-learn phase relations of oscillator coupling can be understood in the framework of the Haken-Kelso-Bunz coordination dynamic model. By introducing broken symmetry, intention, learning and spasticity in the landscape of the potential function of the integrated CNS activity, the change in self-organization becomes understandable. Movement patterns re-learned by oscillator formation and coordination dynamic therapy evolve from reorganization and regeneration of the lesioned CNS by cooperative and competitive interplay between intrinsic coordination dynamics, extrinsic therapy related inputs with physiologic re-afferent input, including intention, motivation, supervised learning, interpersonal coordination, and genetic constraints including neurogenesis. (ABSTRACT TRUNCATED) 相似文献
15.
Heinz Breer 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1981,141(2):271-275
Summary Comparative studies on biochemical and pharmacological aspects of cholinergic transmission in the cerebral ganglion of locust and the mouse cerebral cortex were performed. The results point to common features and significant differences in the cholinergic pharmacology of insect and vertebrate nervous system: ACh content as well as AChE and ChAT activities reflect a highly cholinergic innervation of the locust cerebral ganglion. While the nicotinic ACh-receptor type predominates in locust nervous system, the muscarinic type is the main receptor type in mouse brain.The kinetic data for the high affinity choline uptake of locust synaptosome preparations corroborate the cholinergic properties of nerve endings from locust head ganglion.Abbreviations
ACh
acetylcholine
-
ChAT
cholineacetyltransferase
-
AChE
acetylcholinesterase
-
QNB
quinuclidihylbenzilate
-
-BTX
-bungarotoxin
The author is indebted to Prof. Lueken for support and encouragement during the course of this work. I also gratefully acknowledge the excellent technical assistance of Mrs. M. Düwel. This work was financially supported by the Deutsche Forschungsgemeinschaft (Br 712/2-2). 相似文献
16.
17.
The distribution pattern of alpha-melanocyte stimulating hormone-like immunoreactivity (alpha-MSH-Li) was studied in cats using avidin-biotin modification of immunocytochemical method. Cell bodies containing alpha-MSH-Li were observed in the medial basal hypothalamus, especially in the infundibular nucleus, the lateral hypothalamus and near zona incerta. Fibers with alpha-MSH-Li extended beyond the hypothalamus, into the paraventricular nucleus of the thalamus, rostral amygdala, periaqueductal gray, locus ceruleus, parabrachial nucleus and medial nucleus of the nucleus tractus solitarius. Axons with alpha-MSH-Li were also seen diffusely in various cortical areas, but more extensively in the limbic cortical regions. The distribution pattern of the cell bodies and fibers containing alpha-MSH-Li bears several similarities to that seen in rats, but differs in that the alpha-MSH-Li was not observed in cell bodies in locations other than the medial basal and lateral hypothalamus. 相似文献
18.
Our data demonstrate that androgen-dependent AA is found in areas of the brain that are essential for the neuroendocrine control of gonadotropin secretion and sexual behavior. However, until we know more about the neurons that contain AA, e.g., whether they are peptidergic or catecholaminergic, we can not speculate about the neuronal functions that depend on local estrogen formation. In fact, the association of AA with neurons and not glia has only recently been demonstrated. That estrogens and androgens synergize in the regulation of various neuroendocrine functions has been known for many years, but an explanation of the synergism at the cellular level was not available. One explanation for this synergism may lie in our recent observation that the administration of exogenous estradiol to castrated rats increases androgen-receptor concentrations in specific brain nuclei. Perhaps locally formed estrogens work in a similar fashion to regulate androgen receptors in the brain of the intact male. 相似文献
19.
Immunohistochemical mapping of galanin-like neurons in the rat central nervous system 总被引:31,自引:0,他引:31
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role. 相似文献
20.
Pashut T Wolfus S Friedman A Lavidor M Bar-Gad I Yeshurun Y Korngreen A 《PLoS computational biology》2011,7(3):e1002022
Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS. 相似文献