首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We established a highly sensitive and specific radioimmunoassay (RIA) for BNP. Our RIA detected BNP-like immunoreactivity (-LI) in the porcine and canine brains but did not detect BNP-LI in the human, monkey or rat brain. The widespread distribution of BNP-LI was demonstrated both in the porcine and canine brains, with the highest concentration in the medulla oblongata. In contrast, the highest concentration of ANP-LI determined simultaneously was in the midbrain and the olfactory bulb. High performance-gel permeation chromatography coupled with RIA revealed that the major component of BNP-LI was eluted at the position of synthetic BNP with a small molecular weight (3K). These results indicate that the RIA for BNP serves as a useful tool to investigate physiological roles of BNP.  相似文献   

2.
Brain natriuretic peptide is a novel cardiac hormone   总被引:16,自引:0,他引:16  
Using a radioimmunoassay for brain natriuretic peptide (BNP), we have measured levels of BNP-like immunoreactivity (-LI) in extract of the porcine heart, in perfusate from the isolated porcine heart and in porcine plasma. BNP-LI was detected in the extract of the atrium, though no detectable amount of BNP-LI (more than 1 ng/g) was present in the ventricle. The BNP-LI level in the porcine atrium was 148.7 +/- 23.3 ng/g. BNP-LI was also detected in the perfusate from the heart. Basal secretory rate of BNP was 3.18 +/- 0.76 ng/min. Moreover, BNP-LI was detected in porcine plasma at the concentration of 4.2 +/- 1.3 pg/ml. Gel filtration studies showed that BNP is present in the atrium as a large molecule and is secreted into the circulation as a small molecule. The percentage of BNP-LI to atrial natriuretic peptide (ANP)-LI was almost the same among the extract, the perfusate and the plasma (2-3 percent). These results indicate that BNP is synthesized in and is secreted into the circulation from the heat in a similar fashion as ANP.  相似文献   

3.
Biosynthesis, secretion and receptor selectivity of human brain natriuretic peptide (hBNP) were studied. The BNP mRNA level in the ventricle was approximately 40% of that in the atrium and, taking tissue weight into account, the total amount of BNP mRNA in the ventricle was about twofold greater than the total amount in the atrium. The plasma BNP-like immuno-reactivity (-LI) level in normal subjects was 0.90 +/- 0.07 fmol/mL, which was 16% of the ANP-LI level. In contrast, the plasma BNP-LI level markedly increased in patients with congestive heart failure, with a progressive rise in proportion to its severity. There was a significant step-up of the plasma BNP-LI level in the coronary sinus (CS) compared with that in the aortic root, and the difference in the plasma BNP-LI level between the CS and the aorta (Ao), delta (CS-Ao)BNP, increased with the severity of congestive heart failure. In addition, the difference in the BNP-LI level between the anterior inverventricular vein (AIV) draining the ventricle and the aorta (delta (AIV-Ao)BNP) was comparable to delta (CS-Ao) BNP, indicating that BNP is secreted predominantly from the ventricle. Binding ability to human clearance receptors (C receptors) and cyclic GMP (cGMP) production of hBNP were investigated and compared with those of ANP. hBNP bound to human C receptors very weakly (about 7%), but exerted cGMP production similar to ANP in cultured human mesangial cells and bovine endothelial cells. In conclusion, hBNP is a novel cardiac hormone mainly synthesized in and secreted from the ventricle and plays physiological and pathophysiological roles in the dual cardiac natriuretic peptide system.  相似文献   

4.
Using primary cultures of atrial cardiocytes from neonatal pig, the secretion brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP)-like immunoreactivities (LI) was studied in vitro. Porcine cardiocytes time-dependently secreted both BNP-LI and ANP-LI into medium under a serum-free condition, although the amount of BNP-LI secreted was about one-third that of ANP-LI. Phorbol ester and Ca2+ ionophore had less stimulatory effects on secretion of BNP-LI than that of ANP-LI. Reverse-phase HPLC of the conditioned medium revealed a single major BNP-LI component corresponding to synthetic porcine BNP(1-26). These data suggest that a small molecular weight form BNP, possibly BNP(1-26), is cosecreted with ANP from porcine cardiocytes.  相似文献   

5.
Although brain natriuretic peptide (BNP) is a novel natriuretic peptide originally identified in porcine brain, recent investigation has verified the presence of BNP in porcine heart. In order to identify BNP as a circulating hormone, we analyzed the regional distribution and molecular form of immunoreactive (ir-) BNP in heart and blood. Tissue concentration of ir-BNP was high in atrium, but low in ventricle, in a manner similar to that of atrial natriuretic peptide (ANP). However, the concentration of ir-BNP in atrium was only about 1/50 that of ir-ANP. In plasma, ir-BNP was found at a concentration of 1-3 fmol/ml, which was about 1/20 that of ir-ANP. Both ir-BNP and ir-ANP were present as low molecular weight forms. Three forms of ir-BNP of about 3K daltons, including BNP-26, BNP-29 and BNP-32, are thought to circulate in blood.  相似文献   

6.
C-type natriuretic peptide (CNP) is a new member of the natriuretic peptide family recently identified in porcine brain (1). We raised an antiserum against porcine CNP and set up a radioimmunoassay (RIA) for CNP. Using this RIA system, distribution of immunoreactive (ir-) CNP in porcine tissue was measured and compared with that of ir-atrial natriuretic peptide (ANP) and ir-brain natriuretic peptide (BNP). Tissue concentration of ir-CNP in brain was the highest of the three natriuretic peptides at about 0.79 pmol/g wet wt. CNP was present in medulla-pons in high concentration, with a significant concentration detected in cerebellum. In contrast, ir-CNP was not detected in peripheral tissue, including heart, in a significant concentration. These data demonstrated sharp contrasts in the distribution of the three natriuretic peptides, suggesting that CNP is a natriuretic peptide functioning in the central nervous system.  相似文献   

7.
To characterize the biological functions of rat brain (B-type) natriuretic peptide (BNP), which has been shown to be present mainly in the heart and only faintly in the spinal cord, the concentration and molecular forms of BNP in plasma and spinal cord were determined. The concentration of immunoreactive (ir-) BNP was 2.00 fmol/ml in normal rat and 13.29 fmol/ml in morphine-treated rat, being respectively about 1/20 and 1/80 those of ir-atrial (A-type) natriuretic peptide (ANP). In morphine-treated rats, ir-BNP was shown to circulate mainly as BNP-45, which is identical to a major storage form found in cardiac atrium. In the spinal cord, BNP was also shown to be present as BNP-45, but its concentration was only 0.057 pmol/g, being about 1/60 that of spinal cord ANP. These results confirm that BNP mainly functions as a circulating hormone in the molecular form of BNP-45. Morphine stimulates secretion of ANP and BNP but by different ratios, suggesting different regulation systems for storage and secretion of ANP and BNP.  相似文献   

8.
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 ± 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4–23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.  相似文献   

9.
We elucidated the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in human and bovine adrenocortical steroidogenesis. The urinary volume, sodium excretion and cyclic GMP (cGMP) excretion and plasma cGMP were markedly increased by the synthetic alpha-human ANP (alpha-hANP) infusion in healthy volunteers. Plasma arginine vasopressin (AVP) and aldosterone levels were significantly suppressed. Both ANP and BNP inhibited aldosterone, 19-OH-androstenedione, cortisol and DHEA secretion dose-dependently and increased the accumulation of intracellular cGMP in cultured human and bovine adrenal cells. alpha-hANP significantly suppressed P450scc-mRNA in cultured bovine adrenal cells stimulated by ACTH. Autoradiography and affinity labeling of [125I]hANP, and Scatchard plot demonstrated a specific ANP receptor in bovine and human adrenal glands. Purified ANP receptor from bovine adrenal glands identified two distinct types of ANP receptors, one is biologically active, the other is silent. A specific BNP receptor was also identified on the human and bovine adrenocortical cell membranes. The binding sites were displaced by unlabelled ANP as well as BNP. BNP showed an effect possibly via a receptor which may be shared with ANP. The mean basal plasma alpha-hANP level was 25 +/- 5 pg/ml in young men. We confirmed the presence of ANP and BNP in bovine and porcine adrenal medulla. Plasma or medullary ANP or BNP may directly modulate the adrenocortical steroidogenesis. We demonstrated that the lack of inhibitory effect of alpha-hANP on cultured aldosterone-producing adenoma (APA) cells was due to the decrease of ANP-specific receptor, which caused the loss of suppression of aldosterone and an increase in intracellular cGMP.  相似文献   

10.
By using a radioimmunoassay (RIA) system newly established for human brain natriuretic peptide (BNP), a high concentration of immunoreactive (ir-) human BNP (hBNP) has been found in cardiac atrium (1). Two molecular forms of ir-hBNP of 4K and 13-15K were isolated from atrial extracts by using anti-hBNP IgG immunoaffinity chromatography and reverse phase high performance liquid chromatography (HPLC). By microsequencing, the peptides were determined to be a pro-hBNP (gamma-hBNP) and its C-terminal 32-amino acid peptide (hBNP-32). Based on these results, in cardiac atrium, hBNP is found to be processed in a pathway similar to that of porcine BNP (pBNP) but distinct from that of rat BNP, although low MW hBNP-32 is a major form in contrast to pBNP which exists as a high MW gamma-pBNP.  相似文献   

11.
Pemberton CJ  Yandle TG  Espiner EA 《Peptides》2002,23(12):2235-2244
In order to elucidate how brain natriuretic peptides (NPs) are affected by experimentally induced heart failure, we have measured the immunoreactive (IR) levels of the NP in extracts from 10 regions of ovine brain, including pituitary, and clarified their molecular forms using high performance liquid chromatography (HPLC). Using species-specific radioimmunoassay (RIA), atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were all detected in extracts taken from control animals and sheep that had undergone rapid ventricular pacing for 7 days to induce heart failure. CNP was the most abundant NP as assessed by specific RIA, and the pituitary contained the highest IR levels for all three NP. Compared with control animals, the pituitary content of BNP in animals with heart failure was reduced by 40% (control, 0.26±0.02 pmol/g wet weight versus heart failure 0.16±0.01; P<0.01, n=7). No other significant changes were observed. The molecular forms of ANP and CNP in whole brain extracts as assessed by HPLC were proANP and CNP22, CNP53 and proCNP, respectively. BNP in pituitary extracts was assessed to be primarily proBNP with a minor component of mature BNP26.  相似文献   

12.
Atrial natriuretic peptide (ANP) was recently shown to promote triacylglycerol hydrolysis in human white adipocytes both in vitro and in vivo through a cGMP-dependent pathway. The ANP-stimulated lipolytic effect is known to be specific to primates. In this study, we compared the lipolytic effect of different natriuretic peptides obtained from several species, including ANP from human, rat, chicken, frog, and eel, brain natriuretic peptide (BNP) from porcine and rat, C-type natriuretic peptide (CNP) from human, chicken, and frog, Dendroaspis natriuretic peptide (DNP), urodilatin, and des-[Gln18, Ser19, Gly20, Leu21, Gly22]-ANP (C-ANP), on human and rat adipocytes. We also compared the amount of intracellular cGMP produced in both human and rat adipocytes that were treated with natriuretic peptides. Among these NPs, rat ANP, as well as porcine and rat BNP, DNP and urodilatin showed the ability to elevate intracellular cGMP and to stimulate lipolysis as human ANP. No natriuretic peptide showed the ability to stimulate lipolysis in rat adipocytes, though some of them induced significant elevation of intracelluar cGMP concentrations. These results suggest that ANP and BNP from species close to human have the ability to induce lipolysis in human adipocytes. Jiahua Yu and Yeon Jun Jeong contributed equally.  相似文献   

13.
Brain natriuretic peptide (BNP) is a novel diuretic-natriuretic and vasorelaxant peptide originally isolated from porcine brain. In contrast to mammalian atrial natriuretic peptide (ANP), immunological characterization suggests that mammalian BNPs show structural species differences. In order to determine the amino acid sequence of human BNP, we constructed a human cardiac atrium cDNA library and screened for clones hybridizing with porcine BNP cDNA. By sequence analysis of cDNA encoding a putative human BNP precursor, an amino acid sequence of human prepro-BNP of 134 residues has been deduced, in which a minimum bioactive unit highly homologous to porcine BNP-32 is present at the carboxy-terminus.  相似文献   

14.
Amino acid sequence of human C-type natriuretic peptide (CNP) has recently been deduced to be identical to those of porcine and rat CNPs in the bioactive unit of C-terminal 22 residues (CNP-22) (1). Thus, tissue concentrations and molecular forms of immunoreactive (ir-) CNP in human brain and heart were determined or characterized using a radioimmunoassay established for porcine CNP. In human brain (hypothalamus and medullapons), ir-CNP was detected at a concentration of 1.04 pmol/g, being about 25 times or 70 times higher than ir-atrial (A-type) natriuretic peptide (ANP) or ir-brain (B-type) natriuretic peptide (BNP). CNP was present mainly as CNP-53, with CNP-22 as well as 13K CNP (presumed to be pro-CNP) as minor components. In heart, 1 approximately 5 pmol/g of ir-CNP was detected in both atrium and ventricle, but this ir-CNP was shown to be derived from crossreactivity of ANP. These results demonstrated that human CNP functions exclusively in the central nervous system in contrast to ANP and BNP which mainly function in the circulation system.  相似文献   

15.
Cardiotrophin-1 (CT-1) is a new member of the interleukin (IL)-6 family of cytokines and one of the endogenous ligands for gp130 signaling pathways in the heart, which has potent hypertrophic and survival effects on cardiac myocytes. However, the clinical significance of CT-1 is poorly understood, mainly because there is no widely applicable specific and sensitive assay system for measuring plasma levels of circulating CT-1. We therefore developed a competitive radioimmunoassay (RIA) for human CT-1 with rabbit antiserum recognizing the N-terminus region of human CT-1 and using recombinant human CT-1 as a calibrator. The assay displays no cross-reactivities with any of the IL-6 family of cytokines including IL-11, leukemia inhibitory factor, ciliary neurotrophic factor, and oncostatin M. The lower detection limit in buffer was found to be 43 fmol/ml, and the working range was 120-8300 fmol/ml (CV < 15%). This RIA directly recognizes CT-1-like immunoreactivity in human plasma with a mean value of 571 +/- 75 fmol/ml (mean +/- SD) in healthy volunteers. The RIA coupled with gel filtration chromatographic analyses showed that the major molecular form of circulating CT-1 corresponds to recombinant full-length human CT-1. Moreover, there is a significant increase in the plasma CT-1 concentration from the aorta and coronary sinus, which clearly indicates that the heart secretes CT-1 via the coronary sinus into the peripheral circulation. This RIA should serve as a powerful tool for investigating the clinical significance of CT-1.  相似文献   

16.
Brain natriuretic peptide (BNP) is a newly identified peptide of 26 residues, which has a remarkable homology to but is distinct from atrial natriuretic peptide. The peptide exerts natriuretic-diuretic activity as well as potent chick rectum relaxant activity. By using radioimmunoassay specific to BNP and immunoaffinity chromatography, we have isolated from porcine brain a novel peptide of 32 residues carrying a BNP structure at the C-terminus. The amino acid sequence of this peptide was determined to be: Ser-Pro-Lys-Thr-Met- Arg-Asp-Ser-Gly-Cys-Phe-Gly-Arg-Arg-Leu-Asp-Arg-Ile-Gly-Ser-Leu-Ser-Gly- Leu- Gly-Cys-Asn-Val-Leu-Arg-Arg-Tyr. This peptide is an N-terminal six amino acid extended form of BNP and henceforth is designated BNP-32. BNP and BNP-32 are found to be major forms of BNP family in porcine brain.  相似文献   

17.
18.
The presence of immunoreactive porcine brain natriuretic peptide in rat tissues was studied with a specific radioimmunoassay for porcine brain natriuretic peptide-26. The cross-reactivity of the antiserum used was less than 0.001% with rat atrial natriuretic peptide, rat brain natriuretic peptide-32 and rat brain natriuretic peptide-45. Immunoreactive porcine brain natriuretic peptide was detectable in various tissues of the rat, and high concentrations of immunoreactive porcine brain natriuretic peptide were found in the brain and cardiac atrium, with the highest level in the hypothalamus (159±30 fmol/gram wet tissue, mean±SEM, n=4). Reverse phase high performance liquid chromatography showed that the immunoreactive porcine brain natriuretic peptide of the whole brain and heart extracts eluted mainly at an identical position to synthetic porcine brain natriuretic peptide-26. These findings indicate that porcine brain natriuretic peptide-like substance, distinct from rat brain natriuretic peptide, is present in high concentrations in the rat brain and cardiac atrium.  相似文献   

19.
Brain natriuretic peptide (BNP) and its N-terminally six amino acid extended form (BNP-32) have been identified in porcine brain. These peptides exert diuretic-natriuretic and hypotensive effects, and have remarkably high sequence homology to atrial natriuretic peptide (ANP). We have set up a radioimmunoassay system specific to BNP and surveyed immunoreactive (ir-) BNP in peripheral tissue. In porcine cardiac atrium, we found the highest concentration of ir-BNP. By using gel filtration and reverse phase high performance liquid chromatography, ir-BNP was characterized. Most of ir-BNP in the atrium was found to exist as a high molecular weight form of 12,000 daltons; less than 15% of the total ir-BNP exist as low molecular weight forms such as BNP and BNP-32. These results suggest that BNP functions as a circulating hormone in addition to the neuropeptide function in brain.  相似文献   

20.
Natriuretic peptides help to maintain sodium and fluid volume homeostasis in a healthy cardio-renal environment. Since the identification of Dendroaspis natriuretic peptide (DNP) as a new member of the natriuretic peptide family, DNP has been considered as an important regulator of natriuresis and dieresis. The present study was undertaken to investigate the presence of immunoreactive Dendroaspis natriuretic peptide (DNP) and its specific receptor in rabbit. DNP was detected in heart, kidney, liver, brain, and plasma by radioimmunoassay (RIA). DNP contents of cardiac atrium and ventricle, renal cortex and medulla, liver, and brain were 1.42 ± 0.15, 1.0 6 ± 0.08, 2.55 ± 0.21, 1.81 ± 0.16, 1.36 ± 0.22, and 0.69 ± 0.15 pg/mg of wet weight, respectively. The concentration of DNP in plasma was 235.44 ± 15.44 pg/ml. By quantitative in vitro receptor autoradiography, specific 12?I-DNP binding sites were revealed in glomeruli, interlobular artery, acuate artery, vasa recta bundle, and inner medulla of the kidney with an apparent dissociation constant (K(d)) of 0.29 ± 0.05, 0.36 ± 0.03, 0.84 ± 0.19, 1.18 ± 0.23, and 10.91 ± 1.59 nM, respectively. Basal rate of 3', 5'-cyclic guanosine monophosphate (cGMP) production by particulate guanylyl cyclase (GC) activation of glomerular membranes was basally 13.40 ± 1.70 pmol/mg protein/min. DNP caused an increment of cGMP production in similar magnitude to that caused by ANP, BNP, and urodilatin, while the production of cGMP by CNP was significantly lower than that by DNP. Our results show that plasma levels of DNP were higher when compared to other tissues. DNP produces cGMP via the NPR-A receptor subtype in the kidney, similarly to ANP and BNP, suggesting that plasma DNP could have similar functions as ANP and BNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号