首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK) contributes to increased pain sensitivity (hyperalgesia) to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2) activation in heterologous expression systems. Protein kinase A (PKA) and protein kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia.  相似文献   

2.
In this study we examined the effects of insulin on protein kinase C (PKC) activity in cultured fetal chick neurons. PKC activity, measured as 32P incorporation into histone H1 in the presence of calcium (500 microM), phosphatidylserine (100 micrograms/ml), and diolein (3.3 micrograms/ml) minus the incorporation in the presence of calcium alone, was detected in neuronal cytosolic (207 +/- 33 pmol/min/mg) and membrane (33 +/- 8 pmol/min/mg) fractions. Insulin added to intact neurons increased the activity of PKC in both cytosolic and membrane fractions by about 40%. Neurons preincubated with cycloheximide (10 micrograms/ml) 30 min prior to insulin treatment showed the same degree of stimulation of PKC activity by insulin. The activation of PKC was maximal within 5-10 min of insulin exposure and was sustained for at least 60 min. Insulin stimulated PKC in a dose-dependent manner, with a maximal response obtained at 100 ng/ml. Addition of phosphatidylserine and diolein to neuronal cell extracts resulted in the phosphorylation of four major cytosolic proteins (70, 57, 18, and 16 kDa) and one major membrane protein (75 kDa). Phosphorylation of all five proteins was increased 2-fold in extracts from insulin-treated neurons. Immunoblot analysis of whole cell extracts using antibodies against PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon revealed that cultured fetal chick neurons contained only one of these PKC isoforms, the epsilon-isoform. The enzyme was mostly cytosolic. Insulin had no effect on either the amount of distribution of PKC-epsilon in cultured neurons but induced a small change in the mobility of PKC-epsilon on sodium dodecyl sulfate-polyacrylamide gels. When assay conditions were designed to measure specifically the activity of PKC-epsilon, using a synthetic peptide substrate in the absence of calcium, activity was 50 +/- 12% higher in insulin-treated cells (p less than 0.005). PKC activity in control and insulin treated-neurons was almost completely inhibited when assays included a peptide identical to the pseudo-substrate binding site of PKC-epsilon. We conclude that PKC-epsilon is the major PKC isoform present in cultured fetal chick neurons. Insulin stimulates PKC-epsilon activity by a mechanism that does not involve translocation of the enzyme from cytosol to membrane.  相似文献   

3.
Abstract: To determine whether protein kinase C (PKC) mediates release of peptides from sensory neurons, we examined the effects of altering PKC activity on resting and evoked release of substance P (SP) and calcitonin gene-related peptide (CGRP). Exposing rat sensory neurons in culture to 10 or 50 n M phorbol 12,13-dibutyrate (PDBu) significantly increased SP and CGRP release at least 10-fold above resting levels, whereas the inactive 4α-PDBu analogue at 100 n M had no effect on release. Furthermore, 100 n M bradykinin increased peptide release approximately fivefold. Down-regulation of PKC significantly attenuated the release of peptides evoked by either PDBu or bradykinin. PDBu at 1 n M or 1-oleoyl-2-acetyl- sn -glycerol at 50 µ M did not alter resting release of peptides, but augmented potassium- and capsaicin-stimulated release of both SP and CGRP approximately twofold. This sensitizing action of PKC activators on peptide release was significantly reduced by PKC down-regulation or by pretreating cultures with 10 n M staurosporine. These results establish that activation of PKC is important in the regulation of peptide release from sensory neurons. The PKC-induced enhancement of peptide release may be a mechanism underlying the neuronal sensitization that produces hyperalgesia.  相似文献   

4.
An early event in cellular heat shock response is the transmittance of stress signals from the cell surface into the nuclei, resulting in the induction of heat shock proteins (Hsps). Protein kinase C (PKC) has been implicated as a key player in transducing stress signals. However, mechanism(s) by which PKC regulates heat shock-induced events remains largely unknown. Here we present data that pan-PKC inhibitor GF109203X, but not classic PKC inhibitor G?6976, specifically repressed heat shock-induced accumulation of mRNA as well as promoter activity of hsp90 beta, but not hsp90 alpha, in Jurkat cells. Subcellular fractionation studies revealed that heat shock exclusively induced PKC-epsilon membrane translocation. Consistently, expression of a constitutively active PKC-epsilon(A159E) resulted in an enhanced promoter activity of hsp90 beta upon heat shock, whereas a dominant-negative PKC-epsilon(K437R) abolished this effect. In contrast, constitutively active-PKC-alpha or dominant-negative-PKC-alpha had no effects on heat shock induction of the gene. The effect of PKC-epsilon on hsp90 beta expression seems to be stimuli-specific, as phorbol myristate acetate-mediated hsp90 beta expression was PKC-epsilon-independent. We conclude that PKC-epsilon is specifically required in the signaling pathway leading to the induction of hsp90 beta gene in response to heat shock.  相似文献   

5.
The signaling routes linking G-protein-coupled receptors to mitogen-activated protein kinase (MAPK) may involve tyrosine kinases, phosphoinositide 3-kinase gamma (PI3Kgamma), and protein kinase C (PKC). To characterize the mitogenic pathway of bradykinin (BK), COS-7 cells were transiently cotransfected with the human bradykinin B(2) receptor and hemagglutinin-tagged MAPK. We demonstrate that BK-induced activation of MAPK is mediated via the alpha subunits of a G(q/11) protein. Both activation of Raf-1 and activation of MAPK in response to BK were blocked by inhibitors of PKC as well as of the epidermal growth factor (EGF) receptor. Furthermore, in PKC-depleted COS-7 cells, the effect of BK on MAPK was clearly reduced. Inhibition of PI3-Kgamma or Src kinase failed to diminish MAPK activation by BK. BK-induced translocation and overexpression of PKC isoforms as well as coexpression of inactive or constitutively active mutants of different PKC isozymes provided evidence for a role of the diacylglycerol-sensitive PKCs alpha and epsilon in BK signaling toward MAPK. In addition to PKC activation, BK also induced tyrosine phosphorylation of EGF receptor (transactivation) in COS-7 cells. Inhibition of PKC did not alter BK-induced transactivation, and blockade of EGF receptor did not affect BK-stimulated phosphatidylinositol turnover or BK-induced PKC translocation, suggesting that PKC acts neither upstream nor downstream of the EGF receptor. Comparison of the kinetics of PKC activation and EGF receptor transactivation in response to BK also suggests simultaneous rather than consecutive signaling. We conclude that in COS-7 cells, BK activates MAPK via a permanent dual signaling pathway involving the independent activation of the PKC isoforms alpha and epsilon and transactivation of the EGF receptor. The two branches of this pathway may converge at the level of the Ras-Raf complex.  相似文献   

6.
Calcium influx triggers exocytosis by promoting vesicle fusion with the plasma membrane. However, different subtypes of voltage-gated calcium channel (VGCC) have distinct roles in exocytosis. We previously reported that repetitive stimulation induces activity-dependent potentiation (ADP) which represents the increase of neurotransmitter release. Here, we show that L-type VGCC have a dominant role in ADP of large dense-core vesicle (LDCV) exocytosis. Repetitive stimulation activating VGCC can induce ADP, whereas activation of bradykinin (BK) G protein-coupled receptors or purinergic P2X cation channels can not. L-type VGCC has the dominant role in ADP of LDCV exocytosis by regulating Protein Kinase C (PKC)-epsilon translocation and phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS), a target molecule of PKC-epsilon. We provide evidence that L-type VGCC, PKC-epsilon, and MARCKS, but not Q-type VGCC, are selectively located in lipid rafts. Also, PKC-epsilon translocation induced by L-type VGCC activation occurs in lipid rafts. Disruption of lipid rafts abolishes ADP of LDCV exocytosis and changes the fusion pore kinetics without affecting the first stimulation-induced exocytosis, showing that lipid rafts are involved in the potentiation process. Taken together, we suggest that L-type VGCC in lipid rafts selectively mediates ADP of LDCV exocytosis by regulating PKC-epsilon translocation and MARCKS phosphorylation.  相似文献   

7.
We investigated which isoforms of PKCs can be modulated and what their roles are during l-buthionine-S,R-sulfoximine (BSO)-induced neuronal death. We observed the isoform specific translocation of PKC-epsilon from the soluble fraction to the particulate in cortical neurons treated with 10 mM BSO. The translocation of PKC-epsilon by BSO was blocked by antioxidant trolox, suggesting the PKC-epsilon as a downstream of reactive oxygen species (ROS) elevated by BSO. Trolox inhibited the ROS elevation and the neuronal death in BSO-treated cortical cells. The BSO-induced neuronal death was remarkably inhibited by both the pharmacological inhibition of PKC-epsilon with epsilonV1-2 and the functional blockade for PKC-epsilon through overexpression of PKC-epsilon V1 region, suggesting the detrimental role of PKC-epsilon. These results suggest that PKC-epsilon is the major PKC isoform involved in the pathways triggered by ROS, leading to neuronal death in BSO-treated cortical neurons.  相似文献   

8.
In fast-spiking neurons such as those in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, Kv3.1 potassium channels are required for high frequency firing. The Kv3.1b splice variant of this channel predominates in the mature nervous system and is a substrate for phosphorylation by protein kinase C (PKC) at Ser-503. In resting neurons, basal phosphorylation at this site decreases Kv3.1 current, reducing neuronal ability to follow high frequency stimulation. We used a phospho-specific antibody to determine which PKC isozymes control serine 503 phosphorylation in Kv3.1b-tranfected cells and in auditory neurons in brainstem slices. By using isozyme-specific inhibitors, we found that the novel PKC-delta isozyme, together with the novel PKC-epsilon and conventional PKCs, contributed to the basal phosphorylation of Kv3.1b in MNTB neurons. In contrast, only PKC-epsilon and conventional PKCs mediate increases in phosphorylation produced by pharmacological activation of PKC in MNTB neurons or by metabotropic glutamate receptor activation in Kv3.1/mGluR1-cotransfected cells. We also measured the time course of dephosphorylation and recovery of basal phosphorylation of Kv3.1b following brief high frequency electrical stimulation of the trapezoid body, and we determined that the recovery process is mediated by both novel PKC-delta and PKC-epsilon isozymes and by conventional PKCs. The association between Kv3.1b and PKC isozymes was confirmed by reciprocal coimmunoprecipitation of Kv3.1b with multiple PKC isozymes. Our results suggest that the Kv3.1b channel is regulated by both conventional and novel PKC isozymes and that novel PKC-delta contributes specifically to the maintenance of basal phosphorylation in auditory neurons.  相似文献   

9.
In addition to the induction of cell proliferation and migration, bradykinin (BK) can increase c-fos mRNA expression, activate ERK 1/2 and generate reactive oxygen species (ROS) in vascular smooth muscle cells (VSMC). It is not known, however, whether BK can induce cellular proliferation and extracellular matrix production via redox-sensitive signaling pathways. We investigated the role(s) of ROS in proliferation, migration and collagen synthesis induced by BK in VSMC derived from Sprague Dawley rat aorta. BK (10 nM) increased VSMC proliferation by 30% (n=5); this proliferation was inhibited by the antioxidants N-acetylcysteine (20 mM) and alpha-lipoic acid (LA, 250 mM). In addition, BK induced an increase in cell migration and in collagen levels that were blocked by LA. ROS production induced by BK (n=10) was significantly inhibited by bisindolylmaleimide (4microM) and by PD98059 (40microM). These results suggest that: 1) ROS participate in the mechanism(s) used by bradykinin to induce cellular proliferation; 2) bradykinin induces ROS generation through a pathway that involves the kinases PKC and MEK; and 3) ROS participate in the pathways mediating cell migration and the production of collagen as a response to treatment with bradykinin. To our knowledge, this is the first report describing mechanisms to explain the participation of ROS in the cellular proliferation and extracellular matrix pathway regulated by BK.  相似文献   

10.
This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation.  相似文献   

11.
Adenosine activates a signal transduction pathway (STP) in the heart and the brain, conferring protection against ischemia-reperfusion insult. Activation of protein kinase C (PKC), probably mainly PKC-epsilon, has been demonstrated to be part of the heart STP, but its role in the neuronal pathway is less clear. Here, we provide proof for the participation of PKC-epsilon in the neuronal adenosine-activated STP. Primary rat neuronal cultures were exposed to chemical ischemia by iodoacetate, followed by reperfusion. The cultured neurons were protected against this insult by activation of the adenosine mechanism, by N6-(R)-phenylisopropyladenosine [R(-)-PIA], a specific A1 adenosine receptor agonist. Exposure of the cultures to bisindolylmaleimide I, a highly selective PKC inhibitor, abrogated the protection. The exposure of the cultures to R(-)-PIA was found to result in phosphorylation (activation) of PKC-epsilon. Furthermore, insertion into the cells of a specific peptide inhibitor of PKC-epsilon translocation (epsilonV1-2), also abrogated the protection conferred by R(-)-PIA. These results demonstrate that activation of PKC-epsilon is a vital step in the neuronal adenosine-activated STP.  相似文献   

12.
Protective vasodilation in response to tissue injury and acid back diffusion is associated with release of bradykinin in the rat stomach. We hypothesized that bradykinin might be involved in mechanisms behind such vasodilation via influence on mast cells and sensory neurons. Acid back diffusion after mucosal barrier disruption with hypertonic saline evoked degranulation of mast cells in the rat stomach wall. Acid back diffusion was also associated with increased luminal release of histamine and gastric blood flow in normal rats, but not in mast cell-deficient rats. Bradykinin (BK(2)) receptor blockade inhibited degranulation of submucosal mast cells in the stomach and attenuated gastric vasodilation both in response to acid back diffusion and after stimulation of sensory neurons with capsaicin. Gastric vasodilation caused by mucosal injury with hypertonic saline alone was associated with degranulation of mucosal mast cells. These events were unaffected by inhibition of prostaglandin synthesis, whereas bradykinin (BK(2)) receptor blockade was associated with abolished vasodilation and inhibition of mucosal mast cell degranulation. We conclude that bradykinin is involved in gastric vasodilation caused by hypertonic injury alone via influence on mast cells, and by acid back diffusion via influence on both sensory neurons and mast cells.  相似文献   

13.
Increased renal pelvic pressure or bradykinin increases afferent renal nerve activity (ARNA) via PGE(2)-induced release of substance P. Protein kinase C (PKC) activation increases ARNA, and PKC inhibition blocks the ARNA response to bradykinin. We now examined whether bradykinin mediates the ARNA response to increased renal pelvic pressure by activating PKC. In anesthetized rats, the ARNA responses to increased renal pelvic pressure were blocked by renal pelvic perfusion with the bradykinin B(2)-receptor antagonist HOE 140 and the PKC inhibitor calphostin C by 76 +/- 8% (P < 0.02) and 81 +/- 5% (P < 0.01), respectively. Renal pelvic perfusion with 4beta-phorbol 12,13-dibutyrate (PDBu) to activate PKC increased ARNA 27 +/- 4% and renal pelvic release of PGE(2) from 500 +/- 59 to 1, 113 +/- 183 pg/min and substance P from 10 +/- 2 to 30 +/- 2 pg/min (all P < 0.01). Indomethacin abolished the increases in substance P release and ARNA. The PDBu-mediated increase in ARNA was also abolished by the substance P-receptor antagonist RP 67580. We conclude that bradykinin contributes to the activation of renal pelvic mechanosensitive neurons by activating PKC. PKC increases ARNA via a PGE(2)-induced release of substance P.  相似文献   

14.
Lu CY  Si JQ  Li ZW 《生理学报》1998,50(4):373-378
本文应用全细胞膜片箝技术在新鲜分离的大鼠背根神经节(DRG)神经元上研究缓激肽(BK)对γ-氨基丁酸(GABA)反应的调制作用。结果发现:在34个对GABA反应的细胞中有31个细胞对BK敏感。在对BK敏感并引起内向电流的27个细胞中预加BK,对GABA-激活电流具有明显的抑制作用,如10^-6mol/L的BK可抑制GABA(10^-4mol/L)激活电流30%。BK可将GABA量效曲线明显下移,并  相似文献   

15.
We previously demonstrated that the activation of prostaglandin E-prostanoid-3 (EP3) receptor sensitized the canine nociceptor response to bradykinin (BK). To elucidate the molecular mechanism for this sensitization, we cloned two cDNAs encoding EP3s with different C-terminals, from canine dorsal root ganglia, and established the transformed cell lines stably expressing them. In both transformants, EP3 agonist did not increase intracellular cAMP levels, but it attenuated forskolin-dependent cAMP accumulation in a pertussis toxin (PTX)-sensitive manner and increased intracellular calcium levels in a PTX-resistant manner, indicating that both EP3s can couple with Gi and Gq, but not with Gs proteins. As the nociceptor response to BK is mediated by BK B2 receptor, it was transfected into the transformants and the effects of EP3 agonist on BK-dependent calcium mobilization were investigated. When BK was applied twice with a 6-min interval, the second response was markedly attenuated. Pre-treatment with EP3 agonist had no effect on the initial response, but restored the second response in a PTX-sensitive manner. A protein kinase A inhibitor mimicked the effect of EP3 agonist. These results demonstrate that the activation of EP3 restores the response to BK by attenuating the desensitization of BK B2 receptor activity via Gi protein.  相似文献   

16.
Metalloendopeptidases expressed in neural tissue are characterized in terms of their neuropeptide substrates. One such neuropeptide, bradykinin (BK), is an important inflammatory mediator that activates the type-2 BK receptor (B2R) on the terminal endings of specialized pain-sensing neurons known as nociceptors. Among several metalloendopeptidases that metabolize and inactivate BK, EP24.15 and EP24.16 are known to associate with the plasma membrane in several immortalized cell lines. Potentially, the colocalization of EP24.15/16 and B2R at plasma membrane microdomains known as lipid rafts in a physiologically relevant nociceptive system would allow for discrete, peptidase regulation of BK signaling. Western blot analysis of crude subcellular fractions and lipid raft preparations of cultured rat trigeminal ganglia demonstrate similar expression profiles between EP24.15/16 and B2R on a subcellular level. Furthermore, the treatment of primary cultures of trigeminal ganglia with inhibitors of EP24.15/16 led to the potentiation of several bradykinin-induced events that occur downstream of B2R activation. EP24.15/16 inhibition by N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-AlalTyr-p-aminobenzoate (cFP) resulted in a 1000-fold increase in B2R sensitivity to BK as measured by inositol phosphate accumulation. In addition, cFP treatment resulted in a 31.1+/-5.0% potentiation of the ability of BK to inhibit protein kinase B (Akt) activity. Taken together, these data demonstrate that EP24.15/16 modulate intracellular, peptidergic signaling cascades through B2R in a physiologically relevant nociceptive system.  相似文献   

17.
Stimulation of human fibroblasts with bradykinin (BK) results in the generation of diacylglycerol (DG) and phosphatidic acid (PA). Prelabeling of the cells with [3H]arachidonic acid and [14C]palmitic acid allowed us to quantitate these lipid second messengers and to determine their origin, i.e. DGi and PAi from 3H-enriched inositol phospholipids, and DGc and PAc from 14C-enriched phosphatidylcholine, respectively. BK elicited a biphasic DG response: a first peak at 10-15 s, containing DGi, followed by a second peak at 10-30 min, which is mainly DGc. The latter did not result from de novo lipid biosynthesis. BK also generated free [3H]arachidonate and, to a lesser extent, mono[3H]arachidonoylglycerol. BK stimulation rapidly increased PAi, much more so than PAc, suggesting that DGi, rather than DGc, is the preferred substrate for the enzyme DG kinase. Short pretreatment of the cells with phorbol 12-myristate 13-acetate (PMA) abolished the BK-induced breakdown of phosphoinositides, but did not affect the second-phase DGc level. PMA alone also elicited DGc formation, but more slowly, suggesting a different mechanism. Down-regulation of protein kinase C (PKC) by long term treatment with phorbol ester, prior to BK stimulation, resulted in (i) enhanced DGi and decreased PAi formation, suggesting that DG kinase activity is positively controlled by PKC; (ii) the unexpected manifestation of rapidly formed DGc; (iii) no change in the DGc levels obtained after 30-min BK stimulation, but complete suppression of PMA-induced DGc formation. In contrast, two inhibitors of PKC, staurosporin and 1-O-hexadecyl-2-O-methylglycerol, inhibited both BK- and PMA-induced DGc formation at 30 min, leaving the rapid response towards BK unaffected. The results suggest that the BK-induced rapid and later-phase DG formation and the PMA-induced DG formation are differentially controlled by PKC via mechanisms that differ in the susceptibility to down-regulation or inhibition of PKC.  相似文献   

18.
Bradykinin (BK) plays a major role in producing peripheral sensitization in response to peripheral inflammation and in pain transmission in the central nerve system (CNS). Because BK activates protein kinase C (PKC) through phospholipase C (PLC)-β and myristoylated alanine-rich C kinase substrate (MARCKS) has been found to be a substrate of PKC, we explored the possibility that BK could induce MARCKS phosphorylation and regulate its function. BK stimulation induced transient MARCKS phosphorylation on Ser159 with a peak at 1 min in human neuroblastoma SH-SY5Y cells. By contrast, PKC activation by the phorbol ester phorbol 12,13-dibutyrate (PDBu) elicited MARCKS phosphorylation which lasted more than 10 min. Western blotting analyses and glutathione S-transferase (GST) pull-down analyses showed that the phosphorylation by BK was the result of activation of the PKC-dependent RhoA/Rho-associated coiled-coil kinase (ROCK) pathway. Protein phosphatase (PP) 2A inhibitors calyculin A and fostriecin inhibited the dephosphorylation of MARCKS after BK-induced phosphorylation. Moreover, immunoprecipitation analyses showed that PP2A interacts with MARCKS. These results indicated that PP2A is the dominant PP of MARCKS after BK stimulation. We established SH-SY5Y cell lines expressing wild-type MARCKS and unphosphorylatable MARCKS, and cell morphology changes after cell stimulation were studied. PDBu induced lamellipodia formation on the neuroblastoma cell line SH-SY5Y and the morphology was sustained, whereas BK induced neurite outgrowth of the cells via lamellipodia-like actin accumulation that depended on transient MARCKS phosphorylation. Thus these findings show a novel BK signal cascade-that is, BK promotes neurite outgrowth through transient MARCKS phosphorylation involving the PKC-dependent RhoA/ROCK pathway and PP2A in a neuroblastoma cell line.  相似文献   

19.
Cheng JK  Ji RR 《Neurochemical research》2008,33(10):1970-1978
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Aδ-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-α, IL-1β), PGE2, bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Nav1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

20.
Diabetes mellitus is complicated by the development of a primary cardiomyopathy, which contributes to the excess morbidity and mortality of this disorder. The protein kinase C (PKC) family of isozymes plays a key role in the cardiac phenotype expressed during postnatal development and in response to pathological stimuli. Hyperglycemia is an activating signal for cardiac PKC isozymes that modulate a myriad of cell events including cell death and survival. The epsilon-isozyme of the PKC family transmits a powerful survival signal in cardiac muscle cells. Accordingly, to test the hypothesis that endogenous activation of cardiac PKC-epsilon will protect against hyperglycemic cell injury and left ventricular dysfunction, diabetes mellitus was induced using streptozotocin in genetically engineered mice with cardiac-specific expression of the PKC-epsilon translocation activator [psiepsilon-receptors for activated C kinase (psiepsilon-RACK)]. The results demonstrate a striking PKC-epsilon cardioprotective phenotype in diabetic psiepsilon-RACK (epsilon-agonist) mice that is characterized by inhibition of the hyperglycemia apoptosis signal, attenuation of hyperglycemia-mediated oxidative stress, and preservation of parameters of left ventricular pump function. Hearts of diabetic epsilon-agonist mice exhibited selective trafficking of PKC-epsilon to membrane and mitochondrial compartments, phosphorylation/inactivation of the mitochondrial Bad protein, and inhibition of cytochrome c release. We conclude that activation of endogenous PKC-epsilon in hearts of diabetic epsilon-agonist mice promotes the survival phenotype, attenuates markers of oxidative stress, and inhibits the negative inotropic properties of chronic hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号