首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two enterobactin receptors probably illustrates a more general phenomenon of siderophore receptor redundancy in P. aeruginosa.  相似文献   

2.
Linking of siderophores to antibiotics improves the penetration and therefore increases the antibacterial activity of the antibiotics. We synthesized the acylated catecholates and hydroxamates as siderophore components for antibiotic conjugates to reduce side effects of unprotected catecholate and hydroxamate moieties. In this paper, we report on bis- and tris-catecholates and mixed catecholate hydroxamates based on diamino acids or dipeptides. These compounds were active as siderophores in a growth promotion assay under iron limitation. Most of the conjugates with beta-lactams showed high in vitro activity against Gram-negative bacteria especially Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens and Stenotrophomonas maltophilia. The compounds with enhanced antibacterial activity use active iron uptake routes to penetrate the bacterial outer membrane barrier, demonstrated by assays with mutants deficient in components of the iron transport system. Correlation between chemical structure and biological activity was studied.  相似文献   

3.
4.
Monoclonal antibodies to ferric pseudobactin, the siderophore (microbial iron transport agent) of plant growth-promoting Pseudomonas putida B10, have been developed. Three immunoglobulin G subclass 1-type monoclonal antibodies have been characterized. Each antibody appears to be unique on the basis of their reactions with ferric pseudobactin and with culture supernatants from other pseudomonads. None of the three cross-reacts with ferric pseudobactin-type siderophores produced by seven other pseudomonads. However, P. aeruginosa ATCC 15692 and P. fluorescens ATCC 17400 produced relatively high-molecular-mass compounds (mass greater than approximately 30,000 daltons) that did react with the antibodies. The compound from P. aeruginosa was not iron regulated, while the compound from P. fluorescens was produced only under iron-limiting conditions. A competitive assay using these antibodies has a detection limit of 5 x 10 mol of ferric pseudobactin. This is, to our knowledge, the first report of monoclonal antibodies reactive with siderophores.  相似文献   

5.
The Pseudomonas aeruginosa FpvA receptor is a TonB-dependent outer membrane transport protein that catalyzes uptake of ferric pyoverdin across the outer membrane. Surprisingly, FpvA expressed in P. aeruginosa grown in an iron-deficient medium copurifies with a ligand X that we have characterized by UV, fluorescence, and mass spectrometry as being iron-free pyoverdin (apo-PaA). PaA was absent from FpvA purified from a PaA-deficient P. aeruginosa strain. The properties of ligand binding in vitro revealed very similar affinities of apo-PaA and ferric-PaA to FpvA. Fluorescence resonance energy transfer was used to study in vitro the formation of the FpvA-PaA-Fe complex in the presence of PaA-Fe or citrate-Fe. The circular dichroism spectrum of FpvA indicated a 57% beta-structure content typical of porins and in agreement with the 3D structures of the siderophore receptors FhuA and FepA. In the absence of the protease's inhibitors, a truncated form of FpvA lacking 87 amino acids at its N-terminus was purified. This truncated form still bound PaA, and its beta-sheet content was conserved. This N-terminal region displays significant homology to the N-terminal periplasmic extensions of FecA from Escherichia coli and PupB from Pseudomonas putida, which were previously shown to be involved in signal transduction. This suggests a similar function for FpvA. The mechanism of iron transport in P. aeruginosa via the pyoverdin pathway is discussed in the light of all these new findings.  相似文献   

6.
Many species of pseudomonads produce fluorescent siderophores involved in iron uptake. We have investigated the DNA homology between the siderophore synthesis genes of an opportunist animal pathogen, Pseudomonas aeruginosa, and three plant-associated species Pseudomonas syringae, Pseudomonas putida and Pseudomonas sp. B10. There is extensive homology between the DNA from the different species, consistent with the suggestion that the different siderophore synthesis genes have evolved from the same ancestral set of genes. The existence of DNA homology allowed us to clone some of the siderophore synthesis genes from P. aeruginosa, and genetic mapping indicates that the cloned DNA lies in a locus previously identified as being involved in siderophore production.  相似文献   

7.
Pseudomonas aeruginosa secretes two siderophores, pyoverdine and pyochelin, under iron-limiting conditions. These siderophores are recognized at the cell surface by specific outer membrane receptors, also known as TonB-dependent receptors. In addition, this bacterium is also able to incorporate many heterologous siderophores of bacterial or fungal origin, which is reflected by the presence of 32 additional genes encoding putative TonB-dependent receptors. In this work, we have used a proteomic approach to identify the inducing conditions for P. aeruginosa TonB-dependent receptors. In total, 11 of these receptors could be discerned under various conditions. Two of them are only produced in the presence of the hydroxamate siderophores ferrioxamine B and ferrichrome. Regulation of their synthesis is affected by both iron and the presence of a cognate siderophore. Analysis of the P. aeruginosa genome showed that both receptor genes are located next to a regulatory locus encoding an extracytoplasmic function sigma factor and a transmembrane sensor. The involvement of this putative regulatory locus in the specific induction of the ferrioxamine B and ferrichrome receptors has been demonstrated. These results show that P. aeruginosa has evolved multiple specific regulatory systems to allow the regulation of TonB-dependent receptors.  相似文献   

8.
Schalk IJ  Abdallah MA  Pattus F 《Biochemistry》2002,41(5):1663-1671
Under iron-limiting conditions, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin (PaA), which, after complexing iron, is transported back into the cells via its outer membrane receptor FpvA. The recent finding that all FpvA receptors on the bacterial cell surface are loaded with iron-free PaA under iron limiting conditions has raised questions about the mechanism by which P. aeruginosa transports efficiently iron. We used [(3)H]PaA' [(55)Fe]PaA-Fe, and a kinetically stable chromium-PaA complex to show that iron loading of the receptor occurs through a siderophore displacement mechanism in vivo. Moreover, the fluorescence properties of iron-free PaA revealed that, after PaA-Fe uptake and dissociation, the PaA molecule is recycled into the extracellular medium. We used fluorescence resonance energy transfer (FRET) between the PaA chromophore and the FpvA tryptophans in vivo to monitor the kinetics of PaA displacement by PaA-Fe at the cell surface, the dissociation of iron from the siderophore, and the recycling of PaA back to the receptor on the outer membrane of the bacteria in real time. The loading status of FpvA (PaA versus PaA-Fe) was shown to depend on the relative concentration of the two forms of pyoverdin in the growth medium.  相似文献   

9.
The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (chorismate isomerase) and a pyruvate lyase, as observed for Pseudomonas aeruginosa, or a single-step conversion catalyzed by a salicylate synthase, as with Yersinia enterocolitica. Here we present the structure of the enzyme MbtI (Rv2386c) from M. tuberculosis, solved by multiwavelength anomalous diffraction at a resolution of 1.8 A, and biochemical evidence that it is the salicylate synthase necessary for mycobactin biosynthesis. The enzyme is critically dependent on Mg2+ for activity and produces salicylate via an isochorismate intermediate. MbtI is structurally similar to salicylate synthase (Irp9) from Y. enterocolitica and the large subunit of anthranilate synthase (TrpE) and shares the overall architecture of other chorismate-utilizing enzymes, such as the related aminodeoxychorismate synthase PabB. Like Irp9, but unlike TrpE or PabB, MbtI is neither regulated by nor structurally stabilized by bound tryptophan. The structure of MbtI is the starting point for the design of inhibitors of siderophore biosynthesis, which may make useful lead compounds for the production of new antituberculosis drugs, given the strong dependence of pathogenesis on iron acquisition in M. tuberculosis.  相似文献   

10.
A purified polyclonal antiserum directed against the isolated main 80 kD IROMP (iron-regulated outer-membrane protein) from Pseudomonas aeruginosa PAO1 detected only the 80 kD polypeptide of outer-membrane proteins from PAO1 cells grown in iron deficiency in Western blots. It was also shown to inhibit the uptake of 59Fe pyoverdin by PAO1 cells as well as its binding to purified outer membranes. Immunofluorescence experiments with intact PAO1 cells confirmed that the receptor is present only at the surface of cells grown under conditions of iron deficiency. All these data allow us to conclude that the 80 kD main IROMP of P. aeruginosa is indeed the receptor for the siderophore ferripyoverdin.  相似文献   

11.
12.
Pseudomonads are serious candidates for siderophore production applied to toxic metal (TM) solubilization. The bioaugmentation of contaminated soils by these TM-solubilizing bacteria combined with phytoextraction is an emerging clean-up technology. Unfortunately, siderophore synthesis may be drastically reduced by soluble iron in soils and bacteria can suffer from TM toxicity. In this study, we compared siderophore production by Pseudomonas aeruginosa and Pseudomonas fluorescens by using free and immobilized cells in Ca-alginate beads incubated in a medium containing Fe and/or TM (mixture of Cr, Hg, and Pb in concentrations which represented the soluble fraction of a contaminated agricultural soil). Free cell growth was stimulated by Fe, whatever the microorganism, the inoculum size and the presence or not of TM might have been. P. aeruginosa was less sensitive to TM than P. fluorescens. By comparison with free cells, immobilization with the high inoculum size showed less sensitivity to TM most probably because of lower metal diffusion in beads. Indeed, a maximum of 99.1% of Cr, 57.4% of Hg, and 99.6% of Pb were adsorbed onto beads. The addition of iron in the culture medium reduced significantly siderophore production of free cells while it led only to a low decrease with their immobilized counterparts, in particular with P. aeruginosa. In culture medium enriched with Fe and/or TM, siderophore-specific production of immobilized cells was higher than for free cells.  相似文献   

13.
Environmental biofilms often contain mixed populations of different species. In these dense communities, competition between biofilm residents for limited nutrients such as iron can be fierce, leading to the evolution of competitive factors that affect the ability of competitors to grow or form biofilms. We have discovered a compound(s) present in the conditioned culture fluids of Pseudomonas aeruginosa that disperses and inhibits the formation of biofilms produced by the facultative plant pathogen Agrobacterium tumefaciens. The inhibitory activity is strongly induced when P. aeruginosa is cultivated in iron-limited conditions, but it does not function through iron sequestration. In addition, the production of the biofilm inhibitory activity is not regulated by the global iron regulatory protein Fur, the iron-responsive extracytoplasmic function σ factor PvdS, or three of the recognized P. aeruginosa quorum-sensing systems. In addition, the compound(s) responsible for the inhibition and dispersal of A. tumefaciens biofilm formation is likely distinct from the recently identified P. aeruginosa dispersal factor, cis-2-decenoic acid (CDA), as dialysis of the culture fluids showed that the inhibitory compound was larger than CDA and culture fluids that dispersed and inhibited biofilm formation by A. tumefaciens had no effect on biofilm formation by P. aeruginosa.  相似文献   

14.
The possession of specialized iron transport systems may be crucial for bacteria to override the iron limitation imposed by the host or the environment. One of the most commonly found strategies evolved by microorganisms is the production of siderophores, low-molecular-weight iron chelators that have very high constants of association for their complexes with iron. Thus, siderophores act as extracellular solubilizing agents for iron from minerals or organic compounds, such as transferrin and lactoferrin in the host vertebrate, under conditions of iron limitation. Transport of iron into the cell cytosol is mediated by specific membrane receptor and transport systems which recognize the iron-siderophore complexes. In this review I have analyzed in detail three siderophore-mediated iron uptake systems: the plasmid-encoded anguibactin system of Vibrio anguillarum, the aerobactin-mediated iron assimilation system present in the pColV-K30 plasmid and in the chromosomes of many enteric bacteria, and the chromosomally encoded enterobactin iron uptake system, found in Escherichia coli, Shigella spp., Salmonella spp., and other members of the family Enterobacteriaceae. The siderophore systems encoded by Pseudomonas aeruginosa, namely, pyochelin and pyoverdin, as well as the siderophore amonabactin, specified by Aeromonas hydrophila, are also discussed. The potential role of siderophore-mediated systems as virulence determinants in the specific host-bacteria interaction leading to disease is also analyzed with respect to the influence of these systems in the expression of other factors, such as toxins, in the bacterial virulence repertoire.  相似文献   

15.
The outer membrane permeability barrier is an important resistance factor of bacterial pathogens. In combination with drug inactivating enzymes, target alteration and efflux, it can increase resistance dramatically. A strategy to overcome this membrane-mediated resistance is the misuse of bacterial transport systems. Most promising are those for iron transport. They are vital for virulence and survival of bacteria in the infected host, where iron depletion is a defense mechanism against invading pathogens. We synthesized biomimetic siderophores as shuttle vectors for active transport of antibiotics through the bacterial membrane. Structure activity relationship studies resulted in siderophore aminopenicillin conjugates that were highly active against Gram-negative pathogens which play a crucial role in destructive lung infections in cystic fibrosis patients and in severe nosocomial infections. The mechanism of action and the uptake of the compounds via specific iron siderophore transport routes were demonstrated. The novel conjugates were active against systemic Pseudomonas aeruginosa infections in mice with ED50 values comparable to the quinolone ofloxacin and show low toxicity.  相似文献   

16.
Fluorescent rhizosphere Pseudomonas sp. strain NZ130 promotes plant growth, and may do so in part because of its production of a growth inhibitory factor that is active against phytopathogenic fungi. Analysis of the inhibitory factor that is active against the phytopathogen Pythium ultimum showed that its activity is antagonized at iron concentrations above 10 microM. The iron-antagonized inhibitor was separated from the fluorescent siderophore of this pseudomonad by gel filtration. Mutants that lacked either the iron-antagonized inhibitor or the fluorescent siderophore were isolated. Results of complementation analysis of these mutants by use of a cosmid library indicated that distinct DNA sequences are required for the production of each factor. Analysis of isogenic mutant strains showed that the genetic requirements for the production of the iron-antagonized inhibitor and the fluorescent siderophore are different, and that only the fluorescent siderophore is required for iron assimilation. Fusions of these same sequences to a beta-galactosidase gene were used to show that the regions required for the production of both the fluorescent siderophore and the iron-antagonized inhibitor were iron-regulated.  相似文献   

17.
To acquire iron, Pseudomonas aeruginosa secretes the fluorescent siderophore pyoverdine (Pvd), which chelates iron and shuttles it into the cells via the specific outer membrane transporter FpvA. We studied the role of iron and other metals in the binding and transport of Pvd by FpvA and conclude that there is no significant affinity between FpvA and metal-free Pvd. We found that the fluorescent in vivo complex of iron-free FpvA-Pvd is in fact a complex with aluminum (FpvA-Pvd-Al) formed from trace aluminum in the growth medium. When Pseudomonas aeruginosa was cultured in a medium that had been treated with a metal affinity resin, the in vivo formation of the FpvA-Pvd complex and the recycling of Pvd on FpvA were nearly abolished. The accumulation of Pvd in the periplasm of Pseudomonas aeruginosa was also reduced in the treated growth medium, while the addition of 1 microM AlCl(3) to the treated medium restored the effects of trace metals observed in standard growth medium. Using fluorescent resonance energy transfer and surface plasmon resonance techniques, the in vitro interactions between Pvd and detergent-solubilized FpvA were also shown to be metal dependent. We demonstrated that FpvA binds Pvd-Fe but not Pvd and that Pvd did not compete with Pvd-Fe for FpvA binding. In light of our finding that the Pvd-Al complex is transported across the outer membrane of Pseudomonas aeruginosa, a model for siderophore recognition based on a metal-induced conformation followed by redox selectivity for iron is discussed.  相似文献   

18.
Two new garcinia acid derivatives, 2-(butoxycarbonylmethyl)-3-butoxycarbonyl-2-hydroxy-3-propanolide and 1',1"-dibutyl methyl hydroxycitrate, were isolated from the fruits of Garcinia atroviridis guided by TLC bioautography against the fungus Cladosporium herbarum. The structures of these compounds were established by spectral analysis. The former compound represents a unique beta-lactone structure and the latter compound is most likely an artefact of garcinia acid (= hydroxycitric acid). Both compounds showed selective antifungal activity comparable to that of cycloheximide (MID: 0.5 microg/spot) only against C herbarum at the MIDs of 0.4 and 0.8 microg/spot but were inactive against bacteria (Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli), other fungi (Alternaria sp., Fusarium moniliforme and Aspergillus ochraceous) including the yeast Candida albicans.  相似文献   

19.
Under iron limitation, Pseudomonas aeruginosa ATCC 15692 secretes a major siderophore, pyoverdine I (PvdI). This molecule chelates iron in the extracellular medium and shuttles it into the cells via a specific outer membrane transporter, FpvAI. PvdI consists of a fluorescent chromophore derived from 2,3-diamino-6,7-dihydroxyquinoline and containing one of the bidentate groups involved in iron chelation, linked to a peptide moiety containing the two other bidentate groups required for binding to Fe(3+). Kinetic studies, based on the fluorescence properties of this siderophore, showed that pH 8.0 was optimal for the binding of PvdI and PvdI-Fe to FpvAI. We investigated the mechanism of interaction of PvdI and PvdI-Fe with FpvAI, by synthesizing various analogues of this siderophore, determining their affinity for FpvAI in vitro and in vivo and their ability to transport iron, and interpreting the results obtained in light of the structure of FpvAI-PvdI. Our findings demonstrate that the succinyl moiety linked to the chromophore of PvdI and the first amino acid of the peptide moiety can be sterically hindered with no effect on binding or the iron uptake properties of PvdI-Fe. Moreover, the sequence and the structure of the peptide moiety of PvdI seems to be more important for the iron uptake step than for the binding of the siderophore to FpvAI. Finally, the efficiency of iron uptake and of recycling of the various PvdI analogues after iron release suggests that iron dissociates from PvdI on FpvAI or in the periplasm. All these data have serious implications for the specificity and mechanism of PvdI-mediated iron transport in P. aeruginosa.  相似文献   

20.
Pyochelin is an iron-binding compound produced by Pseudomonas aeruginosa and demonstrates siderophore activity by its involvement in iron transport. During the transport process, an energy-independent association of [55Fe]ferripyochelin with bacteria occurred within the initial 30 s of reaction, followed by an energy-dependent accumulation of iron. The energy-independent association with iron appeared to be at the surface of the bacteria because the iron could be washed from the cells with thioglycolate, whereas accumulated iron was not washed from the bacteria. Energy-independent association of iron with bacteria and energy-dependent accumulation of iron in the presence of ferripyochelin varied concomitantly in cells grown under various conditions, but pyochelin synthesis appeared to be controlled separately. 55Fe complexed with citrate was also taken up by P. aeruginosa with a lower level of initial cell association. Bacterial mechanisms for iron uptake from ferric citrate were present in cells grown in a variety of media and were in lowest levels in cells grown in citrate. The synthesis of bacterial components for iron uptake from ferric citrate and from ferripyochelin was inhibited by high concentrations of iron supplied in growth media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号