首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
气生茎中内皮层的缺乏与光照有关。高强度的白光(大于1mW/cm~2)及高强度的红光(0.2mW/cm)可以抑制茎中内皮层的形成,而低强度的白光(小于1mW/~2),低强度的红光(0.03mW/cm~2),远红光(0.01mw/cm~2)及黑暗可以诱导茎中内皮层的产生。但是,茎中内皮层产生与否不受典型的红光/远红光逆转的光敏素调节,它与光强度有更大的依赖性。在低光强及暗中生长的幼苗,茎中内皮层在栓化过程中过氧化物酶活性增高,同时产生新的与栓化有关的阳极同工酶谱带,生长在高光强下的茎不具内皮层也没有阳极带的出现。用组织化学方法研究发现过氧化物酶在组织中普遍分布,但在黑暗及低光强下生长的茎中过氧化物酶在皮层与小柱之间活性更高,而高光强下的茎不具此差异。  相似文献   

2.
Sheen SJ 《Plant physiology》1973,52(5):422-426
Developmental stages of tobacco (Nicotiana tabacum L. cv. Burley 21) flower and capsule were correlated with tissue contents of polyphenols and activities of phenylalanine ammonialyase, polyphenoloxidase, and peroxidase. Chlorogenic acid, scopolin, and scopoletin were present in most tissues, whereas rutin and two dihydroxyphenolic glycosides concentrated primarily in the corolla and placenta, respectively. Ovules contained only chlorogenic acid. As development progressed, polyphenols accounted for nearly 15% of the dry weight in the green capsule of field-grown plants. Fertilization triggered a rapid increase of chlorogenic acid in the ovary. When l-phenylalanine-U-14C was fed to the detached green capsules and capsule parts, an incorporation of radioactivity into chlorogenic acid and dihydroxyphenolic glycosides occurred which suggested in situ synthesis of these compounds. This was subtantiated by a positive correlation between phenylalanine ammonia-lyase activity and polyphenol accumulation. High polyphenoloxidase activity was associated mainly with the ovary, whereas peroxidase activity was maximal during senescence of all tissues. Polyacrylamide gel slab electrophoresis revealed five cathodic bands and one diffuse zone with poly-phenoloxidase activity in flower extracts. Two anodic poly-phenoloxidase isozymes appeared only in the fertilized ovary. Among 17 peroxidase isozymes, six cathodic forms were present throughout floral development, and the anodic ones increased in number and activity at the later stages of capsule growth.  相似文献   

3.
Isozymes of tobacco pith polyphenoloxidases (o-diphenol oxidase, EC 1.10.3.1) were separated electrophoretically from fresh pith of intact plants and from cultured pith sections. Extracts of fresh pith contained a poorly resolved complex of two to three anodic bands after starch gel electrophoresis at alkaline pH. This anodic complex was more active with chlorogenic acid than with 3,4-dihydroxyphenylalanine and was found in greater activity per gram fresh weight of tissue in younger internodes than in older ones. The longitudinal gradient of activity was thus the opposite of that found for the constitutive isozymes of peroxidase.A well defined cathodic band of polyphenoloxidase activity appeared after culture of pith in modified White's medium with shaking. This band, which was more active with 3,4-dihydroxyphenylalanine than with chlorogenic acid, could be detected after 1 to 2 days of incubation. Its appearance was enhanced by the addition of 10 mum indoleacetic acid; kinetin (1 mum tended to prevent this indoleacetic acid effect). Such hormonal control is opposite to that previously reported for the rapidly appearing new isozymes of peroxidase.The pattern of the major isozymes associated with polyphenoloxidase activities differs from that of peroxidase.  相似文献   

4.
A comparison of peroxidase isoenzymes in skin, cortex and pith tissues of the potato tuber by thin-layer isoelectric focusing in Sephadex revealed major differences in the isoenzyme patterns. Wounding induced several-fold increases in the peroxidase activity which were correlated with the increased amounts of specific isoenzymes. The anodic and cathodic forms with high activity, normally present in large amounts in skin, were found to be preferentially synthesized in suberizing tissues, suggesting a functional role for peroxidase in the suberization process. Cycloheximide treatment prevented the rapid increase in the content and activity of these specific isoenzymes, which indicated that the increase in peroxidase is due to a de novo synthesis of the enzyme. Suberization is not inhibited by gamma irradiation at sprout-inhibiting dose levels.  相似文献   

5.
Ethylene increases the pith peroxidase activity of intact tobacco plants (Nicotiana tabacum) but not of excised pith, either at atmospheric or reduced pressures. In the intact plant, the increased activity involves augmentation of the two constitutive anodic isoperoxidases. In the excised pith, ethylene strongly represses one injury-induced isoperoxidase, while not markedly affecting other isozymes known to be repressed by auxin. Thus, the previously described auxin-induced repression of peroxidase is not due mainly to auxin-induced ethylene formation.  相似文献   

6.
Gove JP  Hoyle MC 《Plant physiology》1975,56(5):684-687
The relationship of indoleacetic acid oxidase activity to peroxidase activity is complicated by numerous multiple forms of this enzyme system. It is not known if all isozymes of this complex system contain both types of activity. Isozyme analysis of commercial horseradish peroxidase and leaf extracts of yellow birch (Betula alleghaniensis) by isoelectric focusing in polyacrylamide gels was used to examine this problem. Horseradish and birch exhibited 20 and 13 peroxidase isozymes, respectively, by staining with benzidine or scopoletin. Guaiacol was less sensitive. Indoleacetic acid oxidase staining (dimethylaminocinnamaldehyde) generally showed fewer bands, and left doubt as to the residence of both types of activity on all isozymes. Elution of the isozymes from the gels and wet assays verified that all peroxidase isozymes contained indoleacetic acid oxidase activity as well. Estimation of oxidase to peroxidase ratios for the major bands indicated small differences in this parameter. A unique isozyme for one or the other type of activity was not found.  相似文献   

7.
Effect of abscisic acid (ABA) on suberization of potato (Solanum tuberosum var. Russet-Burbank) tuber tissue culture was studied by measuring deposition of suberin components and the level of certain key enzymes postulated to be involved in suberization. ABA treatment resulted in a 3-fold increase in the polymeric aliphatic components of suberin and a 4-fold increase in the polymeric aromatic components. Hydrocarbons and fatty alcohols, two components characteristic of waxes associated with potato suberin, increased 9- and 5-fold, respectively, as a result of ABA treatment. Thus, the deposition of the polymeric aliphatics and aromatics as well as waxes, all of which have been postulated to be components of suberized cell walls, was markedly stimulated by ABA. ω-Hydroxy-fatty acid dehydrogenase which showed a rather high initial level of activity increased only 60% due to ABA treatment. Phenylalanine ammonia-lyase activity reached a maximum at a 5-fold level after 4 days in the ABA medium, whereas the control showed only a 3-fold increase. ABA treatment also resulted in a dramatic (7-fold) increase in an isozyme of peroxidase which has been specifically associated with suberization. Thus, ABA appears to induce certain key enzymes which are most probably involved in suberization.  相似文献   

8.
The suberin content of young root parts of iron-deficient and iron-sufficient Phaseolus vulgaris L. cv Prélude was determined. The aliphatic components that could be released from suberin-enriched fractions by LiAID4 depolymerization were identified by gas chromatography-mass spectrometry. In the normal roots, the major aliphatic components were ω-hydroxy acids and dicarboxylic acids in which saturated C16 and monounsaturated C18 were the dominant homologues. Iron-deficient bean roots contained only 11% of the aliphatic components of suberin found in control roots although the relative composition of the constituents was not significantly affected by iron deficiency. Analysis of the aromatic components of the suberin polymer that could be released by alkaline nitrobenzene oxidation of bean root samples showed a 95% decrease in p-hydroxybenzaldehyde, vanillin, and syringaldehyde under iron-deficient conditions. The inhibition of suberin synthesis in bean roots was not due to a decrease in Fe-dependent ω-hydroxylase activity since normal ω-hydroxylation could be demonstrated, both in vitro with microsomal preparations and in situ by labeling of ω-hydroxy and dicarboxylic acids with [14C]acetate. The level of the isozyme of peroxidase that is specifically associated with suberization was suppressed by iron deficiency to 25% of that found in control roots. None of the other extracted isozymes of peroxidase was affected by the iron nutritional status. The activity of the suberin-associated peroxidase was restored within 3 to 4 days after application of iron to the growth medium. The results suggest that, in bean roots, iron deficiency causes inhibition of suberization by causing a decrease in the level of isoperoxidase activity which is required for polymerization of the aromatic domains of suberin, while the ability to synthesize the aliphatic components of the suberin polymer is not impaired.  相似文献   

9.
Two peroxidase isozymes (Ef 0.43 and 0.53) were detected by electrophoretic analysis in homogenates of Meloidogyne arenaria, M. hapla, M. javanica, and M. incognita females reared on tomato. No peroxidase isozymes were detected electrophoretically in homogenates of adult males, preparasitic larvae, or eggs. Peroxidase isozymes from females reared on bean, eggplant, or tobacco differed from those from females reared on tomato. Bean and eggplant populations had a single peroxidase isozyme each, respectively Ef 0.21 and 0.28. No peroxidase isozymes were detected in tobacco populations under the conditions used, although total activity assays did reveal low levels of peroxidase activity in homogenates of tobacco populations. The peroxidase isozymes detected in females reared on tomato or bean appear similar to the peroxidase isozymes present in root-knot galls, adjacent ungalled roots, and roots from uninoculated plants of the corresponding hosts. The probability is discussed that most of the peroxittase activity associated with Meloidogyne spp. females is of host origin.  相似文献   

10.
Increased activities of peroxidase and indole 3-acetic acid (IAA) oxidase were detected on root surfaces of bean (Phaseolus vulgaris) seedlings colonized with a soil saprophytic bacterium, Pseudomonas putida. IAA oxidase activity increased over 250-fold and peroxidase 8-fold. Enhancement was greater for 6-day-old than for 4- or 8-day-old inoculated plants No IAA oxidase or peroxidase activities were associated with the bacterial cells. Native polyacrylamide gel electrophoresis demonstrated that washes of P. putida-inoculated roots contained two zones of peroxidase activity. Only the more anodic bands were detected in washes from noninoculated roots. Ion exchange and molecular sizing gel chromatography of washes from P. putida-colonized roots separated two fractions of peroxidase activity. One fraction corresponded to the anodic bands detected in washes of P. putida inoculated and in noninoculated roots. A second fraction corresponded to the less anodic zone of peroxidase, which was characteristic of P. putida-inoculated plants. This peroxidase had a higher IAA oxidase to peroxidase ratio than the more anodic, common enzyme. The changes in root surface peroxidases caused by colonization by a saprophytic bacterium are discussed with reference to plant-pathogen interactions.  相似文献   

11.
Isopycnic equilibrium centrifugation techniques were used to determine whether any horseradish (Amoracia lapathifolia) peroxidase isozymes were associated with hydroxyproline containing moieties. Purified peroxidase, horseradish root extracts, and peroxidase isozymes released from horseradish root cell walls were tested. In no case could any peak of peroxidase activity be found to band with hydroxyproline.  相似文献   

12.
Sheen SJ 《Plant physiology》1973,51(5):839-844
Developmental stages of tobacco (Nicotiana tabacum L. cv. Burley 21) flower and capsule were correlated with tissue contents of polyphenols and activities of phenylalanine ammonialyase, polyphenoloxidase, and peroxidase. Chlorogenic acid, scopolin, and scopoletin were present in most tissues, whereas rutin and two dihydroxyphenolic glycosides concentrated primarily in the corolla and placenta, respectively. Ovules contained only chlorogenic acid. As development progressed, polyphenols accounted for nearly 15% of the dry weight in the green capsule of field-grown plants. Fertilization triggered a rapid increase of chlorogenic acid in the ovary. When l-phenylalanine-U-(14)C was fed to the detached green capsules and capsule parts, an incorporation of radioactivity into chlorogenic acid and dihydroxyphenolic glycosides occurred which suggested in situ synthesis of these compounds. This was subtantiated by a positive correlation between phenylalanine ammonia-lyase activity and polyphenol accumulation. High polyphenoloxidase activity was associated mainly with the ovary, whereas peroxidase activity was maximal during senescence of all tissues. Polyacrylamide gel slab electrophoresis revealed five cathodic bands and one diffuse zone with poly-phenoloxidase activity in flower extracts. Two anodic poly-phenoloxidase isozymes appeared only in the fertilized ovary. Among 17 peroxidase isozymes, six cathodic forms were present throughout floral development, and the anodic ones increased in number and activity at the later stages of capsule growth.  相似文献   

13.
On the basis of earlier data it was suggested that the induction of cytokinin autonomy might be accompanied by disorders in plastid function and a decrease in cytokinin utilization. In the work presented below the formation of chlorophyll and the isozyme patterns of nine enzymes, some of which are known to be localized in plastids, were compared in tobacco callus tissues differing in their hormonal requirements. Tissues either not requiring cytokinin or both auxin and cytokinin for their growth, contained a lower amount of chlorophyll than the cytokinin-and auxin-dependent strain. The number of isozymes of glucose-6-phosphate and NADP-malate dehydrogenase (i.e. enzymes which are known to be located in plastids) was reduced from four in the cytokinin-and auxin-dependent strain to two and one in the two cytokinin-autonomous strains, respectively. The fully habituated tissue contained an additional isozyme of NADP-malate dehydrogenase. The total number of isozymes of the remaining enzymes (NAD-malate dehydrogenase, peroxidase, esterase and a-and β-galactosidase) either was decreased or not changed in the cytokinin autonomous strains. The exception was an additional anodic peroxidase in one strain. The number of these isozymes in tissue habituated with respect to both auxin and cytokinin either remained the same or increased. Tobacco callus strains with altered requirements for growth regulators contained some new isozymes which were not present in any other strain and some isozymes present in other strains were absent. These differences are discussed in relation to the possible role of plastid function disorder associated with habituation.  相似文献   

14.
In common with other disease situations, rust-resistant wheat leaves show a large increase in peroxidase activity during infection. Peroxidase isozymes from healthy or infected lines of wheat (Triticum aestivum L.) near isogenic for resistance and susceptibility to race 56 of Puccinia graminis tritici were separated by gel electrophoresis and the activity of each was estimated by photometric scanning. In order to ensure that the activity of isozymes observed on gels reflected the changes found in peroxidase enzymes assayed spectrophotometrically in extracts, a study was made of extraction procedures, substrates, and reaction conditions for both types of enzyme measurements. Of the 14 isozymes detected in both healthy and infected leaves, increases in only 1 (isozyme 9) were associated consistently with the development of resistant disease reaction at 20 C. Additional evidence was obtained to show that this isozyme can account for the increased peroxidase activity observed in extracts from resistant plants. When plants with high induced peroxidase activity due to resistance at 20 C were treated with ethylene or transferred to 25 C, they reverted to complete susceptibility. However, the disease-induced activity of isozyme 9 did not fall. The data suggest that, in this case, the association of peroxidase with resistance was a consequence of, not a determinant in, resistance.  相似文献   

15.
Activity of peroxidase, superoxide dismutase and catalase were examined in leaves, stems and roots of olivacea ( oli ) and monstrosa ( mon ) mutants of Lycopersicon esculentum Mill. The extent of the difference between the pattern of oxidative enzyme activities of the wild type (wt) and the mutants was determined. The high peroxidase activity during the developmental stages of the leaves and stems of oli and mon phenotypes is associated with high levels of 4 anodic peroxidases in leaves and of two isozymes in the stem. Leaves of oli exhibit higher activity of the cathodic peroxidase C2, while both mutations have a marked increase of peroxidase C1 in stems. A positive relation between high peroxidase activity and oxidative stress damage was found: in chilling experiments at 5°C, peroxidase level in mutants and wt leaves was negatively correlated with electrolyte leakage. Superoxide dismutase (SOD) activity rises in oli stems around flowering time due to the high activity of the chloroplast forms SOD-1 and SOD-2. Catalases (CAT) were detectable only in early stages of plant development; CAT-2 was nearly absent in wild type tissues but well represented in mon and oli. The oli and mon mutations may affect critical steps of a regulatory pathway controlling various classes of oxidative enzymes in tomato.  相似文献   

16.
Isozymes of horseradish peroxidase may be generated from preexisting forms of the enzyme by incubation at 4 °C in solutions with pH's of 7 or higher. Isozymes generated in this manner express an apparent net increase in negative charge compared to the original form of the enzymes. This is evidenced by an increase in anodic electrophoretic mobility and a decrease in isoelectric point. The generation of new isozymes of peroxidase by such treatment alters the isozyme distribution pattern considerably, but there is no net change in total peroxidase activity present in the extract if pH's of 10.0 or lower are used. The generated peroxidase isozymes are formed irreversibly; neither retitration of extracts to a lower pH nor heat treatment will restore the original peroxidase isozymes.  相似文献   

17.
Culturing the hypocotyl explants from 7-day-old; light-grown seedlings of sunflower (Helianthus annuus L. ) on auxin-supplemented MS medium leads to a marked stimulation in callus induction and root initiation. NAA proved more effective than IAA for both responses. Experiments employing ethylene precursors (methionine and ACC) and action Inhibitor (AgNO3) revealed a significant role of endogenous ethylene levels in auxin-induced rooting. The auxin-ethylene interaction in root morphogenesis is accompanied with specific changes in anodic peroxidase isozymes.  相似文献   

18.
During formation of adventitious roots, the effects of 2-chlorethylphosphonic acid (CEPA), 1-aminocyclopropane-1-carboxylic acid (ACC) and aminoethoxyvinylglycine (AVG) added to a Cheng basal medium, supplemented with indole-3-butyricacid (IBA) and kinetin were determined on peroxidase (PO; EC 1.11.1.7) and poiyphenol oxidase (PPO; EC 1.10.3.1) activities in cotyledon explants of hazelnut ( Corylus avellana L. cv. Casina). CEPA stimulated PO and PPO activities while AVG inhibited. SDS-polyacrylamide gel electrophoresis of preparations from hazelnut cotyledons showed a correlation between proteins and rooting. Ethylene seems to modify total protein content and the activities of PO and PPO. As compared to the control extracts, AVG inhibited the anodic (53, 30.7 and 27 kDa) and cathodic (66.2 and 53.4 kDa) isoperoxidases and anodic (27.5 and 21 kDa) and cathodic (67.5 kDa) isopolyphenol oxidases, whereas CEPA promoted the anodic (30.7, 28.8 and 27 kDa) and cathodic (53.4 and 27.2 kDa) isozymes with PO activity. The increased PO activity during rooting in hazelnut cotyledons could enhance isozymes with lignin biosynthetic activity.  相似文献   

19.
We used a series of normal and Agrobacterium-transformed, bacteria-free tobacco tissue cultures which differ in their levels of histodifferentiation to test the relationship of superoxide dismutase, peroxidase, and catalase to oncogenic transformation and differentiation. When compared with normal callus, tumor callus contained reduced levels of both superoxide dismutase and peroxidase, and a reduced number of isozymes of both enzymes. Teratomas characterized by limited but abnormal differentiation showed increases in superoxide-dismutase activity and isozymes, but levels of peroxidase activity lower than those found in normal callus despite an increase in the number of peroxidase isozymes. A similar disparity between low peroxidase activity and high isozyme number in the shoot suggests that there are increased levels of peroxidase inhibitors or of molecules which interfere with the spectrophotometric assay for peroxidase in more differentiated tissues. As judged by the number of isozymes of both superoxide dismutase and peroxidase in each tissue, the following conclusions are warranted: first, tobacco copper/zinc superoxide dismutases and peroxidases are encoded in several duplicated loci which are regulated independently. Second, transformation is associated with a decrease in both the specific activity and isozyme number of superoxide dismutase. Third, the partial release from the total inhibition of expression of differentiated function exhibited by teratoma is associated with an increase in both the activity and isozyme number of superoxide dismutase. Finally, the expression of superoxide dismutase and peroxidase isozymes appears to be coordinated during differentiation in a manner that is consistent with their role in an integrated mechanism for the removal of reduced oxygen species.  相似文献   

20.
Electrophoretic analyses using Sepraphore III strips indicate the presence of a minimum of five bands of peroxidase activity detectable with o-dianisidine and H2O2 in extracts from first internodes of Sorghum vulgare var. Wheatland milo. Three of these isozymes were anodic and two were cathodic forms at pH 8.3. The relative amounts of these forms are compared in zero time and incubated excised internodes, stelar and cortical tissues of internodes, and in other parts of the plant. Localization of these isozymes with respect to walls and cytoplasm was characterized by differential centrifugation after grinding of the internodes and by an in situ extraction of walls by centrifugation after vacuum infiltration. Using the latter in situ method, 32% of the total activity of the fast moving cathodic form was exchanged from the wall after infiltration with 50 mm CaCl2. Only trace amounts of the other isozymes were localized in the walls of the cortex. The isozymes were eluted as two peaks from columns of Sephadex G-100 and three peaks from Agarose A-15m. Although such groupings may be due to asymmetric molecules and ionic interactions as well as to molecular weight differences, they may indicate associations with complexes or membranes of different cytoplasmic constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号