首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Triacsins A, B, C, and D are new inhibitors of long chain acyl-CoA synthetase (EC 6.2.1.3) and possess different inhibitory potencies against the enzyme (Tomoda, H., Igarashi, K., and Omura, S. (1987) Biochim. Biophys. Acta 921, 595-598). Acyl-CoA synthetase activity in the membrane fraction of Raji cells was also inhibited by triacsins. The same hierarchy of inhibitory potency as that against the enzyme from other sources, triacsin C greater than triacsin A much greater than triacsin D greater than or equal to triacsin B, was observed. When Raji cells were cultivated in the presence of triacsins, cell proliferation was inhibited in a dose-dependent fashion. The drug concentrations required for 50% inhibition of cell growth at day 2 were calculated to be 1.8 microM for triacsin A, much greater than 20 microM for triacsin B, 1.0 microM for triacsin C, and much greater than 15 microM for triacsin D, demonstrating a hierarchy for inhibitory potency of triacsins similar to that against the acyl-CoA synthetase activity. To understand the role of long chain acyl-CoA synthetase in animal cells, the effect of triacsins on the lipid metabolism of Raji cells was studied. When intact Raji cells were incubated with [14C]oleate in the presence of individual triacsins, the incorporation of [14C]oleate into each of the lipid fractions such as phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol was inhibited to an analogous extent. A common hierarchy, triacsin C greater than triacsin A much greater than triacsin D greater than triacsin B, was shown for the inhibition in each synthesis of the three lipids, which was identical with that for acyl-CoA synthetase. These findings indicate that the inhibition of acyl-CoA synthetase is well correlated with the inhibition of lipid synthesis. Taken together, the data strongly suggest that the inhibition of acyl-CoA synthetase by triacsins leads to the inhibition of lipid synthesis and eventually to the inhibition of proliferation of Raji cells.  相似文献   

3.
Short-, medium-, and long-chain fatty acid:CoA ligases from human liver were tested for their sensitivity to inhibition by triacsin C. The short-chain fatty acid:CoA ligase was inhibited less than 10% by concentrations of triacsin C as high as 80 microM. The two mitochondrial xenobiotic/medium-chain fatty acid:CoA ligases (XM-ligases), HXM-A and HXM-B, were partially inhibited by triacsin C, and the inhibitions were characterized by low affinity for triacsin C (K(I) values > 100 microM). These inhibitions were found to be the result of triacsin C competing with medium-chain fatty acid for binding at the active site. The microsomal and mitochondrial forms of long-chain fatty acid:CoA ligase (also termed long-chain fatty acyl-CoA synthetase, or long-chain acyl-CoA synthetase LACS) were potently inhibited by triacsin C, and the inhibition had identical characteristics for both LACS forms. Dixon plots of this inhibition were biphasic. There is a high-affinity site with a K(I) of 0.1 microM that accounts for a maximum of 70% of the inhibition. There is also a low affinity site with a K(I) of 6 microM that accounts for a maximum of 30% inhibition. Kinetic analysis revealed that the high-affinity inhibition of the mitochondrial and microsomal LACS forms is the result of triacsin C binding at the palmitate substrate site.The high-affinity triacsin C inhibition of both the mitochondrial and microsomal LACS forms was found to require a high concentration of free Mg(2+), with the EC(50) for inhibition being 3 mM free Mg(2+). The low affinity triacsin C inhibition was also enhanced by Mg(2+). The data suggests that Mg(2+) promotes triacsin C inhibition of LACS by enhancing binding at the palmitate binding site. In contrast, the partial inhibition of the XM-ligases by triacsin C, which showed only a low-affinity component, did not require Mg(2+).  相似文献   

4.
The fuel sensing enzyme AMP-activated protein kinase (AMPK) enhances processes that generate ATP when stresses such as exercise or glucose deprivation make cells energy deficient. We report here a novel role of AMPK, to prevent the activation of NF-kappaB in endothelial cells exposed to the fatty acid palmitate or the cytokine TNF-alpha. Incubation of cultured human umbilical vein endothelial cells (HUVEC) with elevated levels of palmitate (0.4mM) increased NF-kappaB reporter gene expression by 2- to 4-fold within 8h and caused a 7-fold increase in VCAM-1 mRNA expression at 24h. In contrast, no increase in reporter gene expression was detected for AP-1, glucocorticoid-, cyclic AMP-, or serum response elements. Similar increases in NF-kappaB activation and VCAM-1 expression were not observed in cells incubated with an elevated concentration of glucose (25mM). The increases in NF-kappaB activation and VCAM-1 expression caused by palmitate were markedly inhibited by co-incubation with the AMPK activator AICAR and, where studied, by expression of a constitutively active AMPK. Likewise, AMPK activation inhibited the increase in NF-kappaB reporter gene expression observed in HUVEC incubated with TNF-alpha. The results suggest that AMPK inhibits the activation of NF-kappaB caused by both palmitate and TNF-alpha. The mechanism responsible for this action, as well as its relevance to the reported anti-atherogenic actions of exercise, metformin, thiazolidinediones, and adiponectin, all of which have been shown to activate AMPK, remains to be determined.  相似文献   

5.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3-7-fold) and phosphatidylethanolamine (2-3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

6.
Inhibition of acyl-CoA synthetase by triacsins   总被引:4,自引:0,他引:4  
Triacsin A, 1-hydroxy-3-(E,E-2',4'-undecadienylidine) triazene and triacsin C, 1-hydroxy-3-(E,E,E-2',4',7'-undecatrienylidine) triazene are potent inhibitors of acyl-CoA synthetase (EC 6.2.1.3). The concentrations of triacsin A required for 50% inhibition of acyl-CoA synthetase from Pseudomonas aeruginosa and from rat liver are 17 and 18 microM, and those of triacsin C are 3.6 and 8.7 microM, respectively. Kinetic analysis indicates that inhibition of triacsin A is non-competitive with respect to the two substrates ATP and coenzyme A, but is competitive with respect to long-chain fatty acids. The apparent Ki value is 8.97 microM when oleic acid is used as substrate. Acid hydrolysis of triacsins results in corresponding polyenic aldehydes with no activity. This suggests that the N-hydroxytriazene moiety is essential for inhibitory activity against acyl-CoA synthetase.  相似文献   

7.
Triacsins A, B, C, and D are newly discovered compounds isolated from the culture filtrate of streptomyces which are known to inhibit nonspecific long chain acyl-CoA synthetase (EC 6.2.1.3.). These inhibitors have not been previously studied with regard to their effects on arachidonoyl-CoA synthetase, an enzyme which specifically utilizes arachidonate and other icosanoid precursor fatty acids. To explore this question, we used triacsin C, a potent inhibitor of the nonspecific acyl-CoA synthetase. Triacsin C was found to inhibit the action of arachidonoyl-CoA synthetase and the nonspecific enzyme in sonicates of HSDM1C1 mouse fibrosarcoma cells. Importantly, however, the triacsin concentration and length of pre-incubation with the enzymes could be adjusted to almost completely inhibit (greater than 80%) the nonspecific long chain acyl CoA-synthetase, with less than 20% inhibition of arachidonoyl-CoA synthetase. Using intact cultured cells exposed to 1 ug/ml triacsin for up to 15 minutes, we unexpectedly observed preferential inhibition of arachidonoyl-CoA synthetase activity. In intact cell studies, arachidonoyl-CoA synthetase was inhibited greater than 90%, with 55-60% inhibition of the nonspecific acyl-CoA synthetase. As additional evidence of its inhibition of acyl-CoA synthetase enzymes in intact cells, triacsin C inhibited both fatty acid uptake into cells and icosanoid production, metabolic processes which in certain cell types appear to be dependent on acyl-CoA synthetase activity. Thus, triacsin C is a novel inhibitor which can alter the fatty metabolism of intact cells. This compound can be of significant value in determining the specific cellular functions of the two acyl-CoA synthetase enzymes.  相似文献   

8.
Incubation of hepatocyte monolayers with oleate or palmitate (1.0 mM) for 2-48 h, increased (20 to 80%) the incorporation of [1,3-14C]glycerol and palmitate into triacyglycerol but not phosphatidylcholine. The effect of fatty acids on liver cell triacylglycerol formation correlated well (r = 0.990) with a simultaneous rise (2-4-fold) in phosphatidate phosphatase (EC 3.1.3.4) activity. Phosphatidate phosphatase activity and triacylglycerol biosynthesis are also increased (2-fold) after hepatocyte monolayers are incubated for 24 h with cyclic GMP in the absence of fatty acids. Fatty acid-dependent increases in liver cell triacylglycerol formation and phosphatidate phosphatase activity are not blocked by cycloheximide. Phosphatidylcholine biosynthesis was also elevated in homogenates of liver cells exposed (24-48 h) to 1.0 mM oleate when exogenous CDPcholine was added to the incubation mixture. Apparently, the phosphatidate phosphatase-dependent rise in diacylglycerols that occurs after fatty acid exposure is primarily shunted into triacylglycerols because liver cell CDPcholine content is not correspondingly increased, and high levels of diacylglycerol acyltransferase (EC 2.3.1.20) and fatty acyl-CoA derivatives are present.  相似文献   

9.
After 24 h exposure to 0.1 mM oleate or 0.1 mM palmitate there was a 2- and 1.7-fold increase, respectively, in the incorporation of choline into the lipids of type II pneumocytes. Palmitate increased the labeling of disaturated phosphatidylcholine (PC) from 23.0% of total labeled PC in control cultures to 56.6% and oleate decreased labeling of disaturated PC to 9.4%. The percentage of total cellular radioactivity found in the lipid fraction was also markedly higher in the fatty acid-treated cells (83.3% for oleate and 78.7% for palmitate) than in control cultures (64.0%). Radioactivity in water-soluble choline metabolites was correspondingly lower, with phosphocholine representing more than 95% of the label in both control and experimental cultures. After a 3 h pulse-chase period, oleate and palmitate significantly increased the percentage of total cellular radioactivity in PC and decreased the percentage in phosphocholine. Similar results were obtained by adding melittin (1–2 μg/ml) or phospholipase C (0.05 U/ml) to the culture medium. The stimulation of PC synthesis by fatty acids was demonstrated as early as 1 h after exposure to oleate or palmitate and at all concentrations from 0.025 to 0.25 mM. Cytidylyltransferase activity in total cell homogenates was also enhanced by long-term exposure to fatty acids and short-term addition of fatty acids or phospholipase C and melittin to the culture medium. A similar increase in Cytidylyltransferase activity was found in the 100 000 × g particulate fraction of type II cells exposed to fatty acids, whereas no differences were found between the cytosolic fractions of control and treated cells. These results support the concept that an increase in intracellular level of fatty acids either from an exogenous source or following the activation of endogenous phospholipases regulates PC synthesis in fetal type II pneumocytes.  相似文献   

10.
There has been much interest in the health effects of dietary fat, but few studies have comprehensively compared the acute metabolic fate of specific fatty acids in vivo. We hypothesized that different classes of fatty acids would be variably partitioned in metabolic pathways and that this would become evident over 24 h. We traced the fate of fatty acids using equal amounts of [U-(13)C]linoleate, [U-(13)C]oleate, and [U-(13)C]palmitate given in a test breakfast meal in 12 healthy subjects. There was a tendency for differences in the concentrations of the tracers in plasma chylomicron-triacylglycerol (TG) (oleate > palmitate > linoleate). This pattern remained in plasma nonesterified fatty acid (NEFA) and very low-density lipoprotein (VLDL)-TG (P 相似文献   

11.
Soleus muscle strips from Wistar rats were preincubated with palmitate in vitro before the determination of insulin-mediated glucose metabolism in fatty acid-free medium. Palmitate decreased insulin-stimulated glycogen synthesis to 51% of control in a time- (0-6 h) and concentration-dependent (0-2 mM) manner. Basal and insulin-stimulated glucose transport/phosphorylation also decreased with time, but the decrease occurred after the effect on glycogen synthesis. Preincubation with 1 mM palmitate, oleate, linoleate, or linolenate for 4 h impaired glycogen synthesis stimulated with a submaximal physiological insulin concentration (300 microU/ml) to 50-60% of the control response, and this reduction was associated with impaired insulin-stimulated phosphorylation of protein kinase B (PKB). Preincubation with different fatty acids (all 1 mM for 4 h) had varying effects on insulin-stimulated glucose transport/phosphorylation, which was decreased by oleate and linoleate, whereas palmitate and linolenate had little effect. Across groups, the rates of glucose transport/phosphorylation correlated with the intramuscular long-chain acyl-CoA content. The similar effects of individual fatty acids on glycogen synthesis but different effects on insulin-stimulated glucose transport/phosphorylation provide evidence that lipids may interact with these two pathways via different mechanisms.  相似文献   

12.
Little is known about the biochemical basis of the action of free fatty acids (FFA) on breast cancer cell proliferation and apoptosis. Here we report that unsaturated FFAs stimulated the proliferation of human MDA-MB-231 breast cancer cells, whereas saturated FFAs inhibited it and caused apoptosis. Saturated FFA palmitate decreased the mitochondrial membrane potential and caused cytochrome c release. Palmitate-induced apoptosis was enhanced by the fat oxidation inhibitor etomoxir, whereas it was reduced by fatty-acyl CoA synthase inhibitor triacsin C. The non-metabolizable analog 2-bromopalmitate was not cytotoxic. This indicates that palmitate must be metabolized to exert its toxic effect but that its action does not involve fat oxidation. Pharmacological studies showed that the action of palmitate is not mediated via ceramides, reactive oxygen species, or changes in phosphatidylinositol 3-kinase activity. Palmitate caused early enhancement of cardiolipin turnover and decreased the levels of this mitochondrial phospholipid, which is necessary for cytochrome c retention. Cosupplementation of oleate, or increasing beta-oxidation with the AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside, both restored cardiolipin levels and blocked palmitate-induced apoptosis. Oleate was preferentially metabolized to triglycerides, and oleate cosupplementation channeled palmitate esterification processes to triglycerides. Overexpression of Bcl-2 family members blocked palmitate-induced apoptosis. The results provide evidence that a decrease in cardiolipin levels and altered mitochondrial function are involved in palmitate-induced breast cancer cell death. They also suggest that the antiapoptotic action of oleate on palmitate-induced cell death involves both restoration of cardiolipin levels and redirection of palmitate esterification processes to triglycerides.  相似文献   

13.
Free fatty acids (FFAs) are proposed to play a pathogenic role in both peripheral and hepatic insulin resistance. We have examined the effect of saturated FFA on insulin signalling (100 nM) in two hepatocyte cell lines. Fao hepatoma cells were treated with physiological concentrations of sodium palmitate (0.25 mM) (16:0) for 0.25-48 h. Palmitate decreased insulin receptor (IR) protein and mRNA expression in a dose- and time-dependent manner (35% decrease at 12 h). Palmitate also reduced insulin-stimulated IR and IRS-2 tyrosine phosphorylation, IRS-2-associated PI 3-kinase activity, and phosphorylation of Akt, p70 S6 kinase, GSK-3 and FOXO1A. Palmitate also inhibited insulin action in hepatocytes derived from wild-type IR (+/+) mice, but was ineffective in IR-deficient (-/-) cells. The effects of palmitate were reversed by triacsin C, an inhibitor of fatty acyl CoA synthases, indicating that palmitoyl CoA ester formation is critical. Neither the non-metabolized bromopalmitate alone nor the medium chain fatty acid octanoate (8:0) produced similar effects. However, the CPT-1 inhibitor (+/-)-etomoxir and bromopalmitate (in molar excess) reversed the effects of palmitate. Thus, the inhibition of insulin signalling by palmitate in hepatoma cells is dependent upon oxidation of fatty acyl-CoA species and requires intact insulin receptor expression.  相似文献   

14.
Accumulation of intracellular lipid in obesity is associated with metabolic disease in many tissues including liver. Storage of fatty acid as triglyceride (TG) requires the activation of fatty acids to long-chain acyl-CoAs (LC-CoA) by the enzyme acyl-CoA synthetase (ACSL). There are five known isoforms of ACSL (ACSL1, -3, -4, -5, -6), which vary in their tissue specificity and affinity for fatty acid substrates. To investigate the role of ACSL1 in the regulation of lipid metabolism, we used adenoviral-mediated gene transfer to overexpress ACSL1 in the human hepatoma cell-line HepG2 and in liver of rodents. Infection of HepG2 cells with the adenoviral construct AdACSL1 increased ACSL activity >10-fold compared with controls after 24 h. HepG2 cells overexpressing ACSL1 had a 40% higher triglyceride (TG) content (93 +/- 3 vs. 67 +/- 2 nmol/mg protein in controls, P < 0.05) after 24-h exposure to 1 mM oleate. Furthermore, ACSL1 overexpression produced a 60% increase in cellular LCA-CoA content (160 +/- 6 vs. 100 +/- 6 nmol/g protein in controls, P < 0.05) and increased [(14)C]oleate incorporation into TG without significantly altering fatty acid oxidation. In mice, AdACSL1 administration increased ACSL1 mRNA and protein more than fivefold over controls at 4 days postinfection. ACSL1 overexpression caused a twofold increase in TG content in mouse liver (39 +/- 4 vs. 20 +/- 2 mumol/g wet wt in controls, P < 0.05), and overexpression in rat liver increased [1-(14)C]palmitate clearance into liver TG. These in vitro and in vivo results suggest a pivotal role for ACSL1 in regulating TG synthesis in liver.  相似文献   

15.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3–7-fold) and phosphatidylethanolamine (2–3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

16.
Differences in oxidation of individual dietary fatty acids could contribute to the effect of dietary fat composition on risk factors for non-insulin-dependent diabetes mellitus and cardiovascular disease. Using a novel stable isotope technique, we compared fractional oxidation of chylomicron-derived oleate and palmitate in 10 healthy adults in a crossover study. 1-(13)C-labeled oleate or palmitate was emulsified into a eucaloric formula diet administered each 20 min for 7 h to produce a plateau in excretion of (13)C label in breath CO(2). Unlabeled oleate and palmitate each provided 16% of dietary energy, and other fatty acids provided 8% of energy. Total dietary fat was 40% of energy, carbohydrate was 46%, and protein was 14%. Diet without tracer was fed for 2 h before beginning tracer administration to establish a baseline fed state. Relative oxidation of oleate versus palmitate was defined as fractional oxidation of oleate divided by fractional oxidation of palmitate. Relative oxidation averaged 1.21 (99.5% confidence interval = 1.03;-1.39), indicating that fractional oxidation of oleate was significantly greater than that of palmitate.  相似文献   

17.
Triacsins A,B,C, and D are newly discovered compounds isolated from the culture filtrate of streptomyces which are known to inhibit nonspecific long chain acyl-CoA synthetase (EC 6.2.1.3.). These inhibitors have not been previously studied with regard to their effects on arachidonoyl-CoA synthetase, an enzyme which specifically utilizes arachidonate and other icosanoid precursor fatty acids. To explore his question, we used triacsin C, a potent inhibitor of the nonspecific acyl-CoA synthetase. Triacsin C was found to inhibit the action of arachidonoyl-CoA synthetase and the nonspecific enzyme in sonicates of HSDM1C1 mouse fibrosarcoma cells. Importantly, however, the triacsin concentration and length of pre-incubation with the enzymes could be adjusted to almost completely inhibit (>80%) the nonspecific long chain acyl CoA-synthetase, with less than 20% inhibition of arachidonoyl-CoA synthetase. Using intact cultured cells exposed to 1 ug/ml traicsin for up to 15 minutes, we unexpectedly observed preferential inhibition of arachidonoyl-CoA synthetase activity. In intact cell studies, arachidonoyl-CoA synthetase was inhibited > 90%, with 55–60% inhibition of the nonspecific acyl-CoA synthetase. As additional evidence of its inhibition of acyl-CoA synthetase enzymes in intact cells, triacsin c inhibited both fatty acid uptake into cells and icosanoid production, metabolic processes which in certain cell types appear to be dependent on acyl-CoA synthetase activity. Thus, triacsin C is a novel inhibitor which can alter the fatty metabolism of intact cells. This compound can be of significant value in determining the specific cellular functions of the two acyl-CoA synthetase enzymes.  相似文献   

18.
The effect of intracellular free fatty acid (FFA) accumulation on ob gene expression in adipocytes was examined. In fully differentiated 3T3-L1 adipocytes, triacsin C, a specific acyl CoA synthetase inhibitor with a K(i) of 8.97 microM, inhibited ob gene expression by 20% at 5 x 10(-5)M. At this concentration, triacsin C induced accumulation of intracellular FFA. Treatment with both chylomicron and triacsin C reduced ob gene expression more than treatment with triacsin C alone. Treatment with 2-bromopalmitate, a poorly metabolizable palmitate analog, reduced ob gene expression by 50% at 10(-4)M, but palmitate at the same concentration had no effect. This is the first demonstration that the ob gene is downregulated by intracellular FFA accumulation, thereby raising the possibility that ob product is regulated in response to lipolysis.  相似文献   

19.
The cellular composition and concentration of fatty acids are crucial for proliferation and survival. We recently showed stimulation of protein phosphatase type-2C (PP2C) by unsaturated fatty acids. Here, we describe that treatment of cultured chick neurons with 100 microM oleic acid for 24h increased the percentage of damaged neurons to 61+/-9% compared with 25+/-4% in controls. Oleic acid-induced cell death showed features of apoptosis such as chromatin condensation, shrinkage of the nucleus, DNA fragmentation and caspase-3 activation. Extensive studies with a variety of fatty acids revealed a striking correlation between activation of PP2C and induction of apoptosis. Lipophilicity, oxidizability, and an acidic group were required for both effects. In addition, activation of PP2C and induction of apoptosis could discriminate between cis- and trans-conformation of the fatty acids. The results are in favor of PP2C playing an important, yet unidentified role in apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号