首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure has been developed for the partial purification from Chlorella vulgaris of an enzyme which catalyzes the formation of HCN from D-histidine when supplemented with peroxidase of a metal with redox properties. Some properties of the enzyme are described. Evidence is presented that the catalytic activity for HCN formation is associated with a capacity for catalyzing the oxidation of a wide variety of D-amino acids. With D-leucine, the best substrate for O2 consumption, 1 mol of ammonia is formed for half a mol of O2 consumed in the presence of catalase. An inactive apoenzyme can be obtained by acid ammonium sulfate precipitation, and reactivated by added FAD. On the basis of these criteria, the Chlorella enzyme can be classified as a D-amino acid oxidase (EC 1.4.3.3). Kidney D-amino acid oxidase and snake venom L-amino acid oxidase, which likewise form HCN from histidine on supplementation with peroxidase, have been compared with the Chlorella D-amino acid oxidase. The capacity of these enzymes for causing HCN formation from histidine is about proportional to their ability to catalyze the oxidation of histidine.  相似文献   

2.
The basic amino acids, L-arginine, L-lysine, LO-irnithine, and to a lesser extent L-histidine, strongly stimulate the O2 uptake of cell suspensions of the blue-green alga or cyanobacterium anacystis nidulans. In the case of L-histidine, the extra O2 consumption is associated with the formation in vivo of small amounts of HCN, particularly in an atmosphere of O2. The enzyme responsible for both the stimulated O2 uptake with the basic amino acids and the formation of HCN from histidine has been isolated and identified as an L-amino acid oxidase specific for the basic amino acids. The purification (15 000-fold) of this enzyme is described. The isolated enzyme is inhibited by o-phenanthroline, which has a similar inhibitory effect on the O2 uptake of cell suspensions with (and without) added amino acids. The basic amino acid oxidase, which is not inhibited by HCN, can be regarded as an 'alternate' oxidase in A. nidulans. An oxidase sensitive to HCN is apparently also operative. At high concentrations of lysine or arginine added HCN can almost double the initial rate of O2 consumption of cell suspensions. This can be attributed to the inhibition of catalase by HCN. At low concentrations of the amino acids, and with more prolonged incubation time, HCN becomes inhibitory. One interpretation could be that the HCN-sensitive terminal oxidase is also involved in the extra O2 uptake elicited by the basic amino acids, but other interpretations are possible. The extra O2 uptake elicited by histidine is almost completely inhibited by HCN, which is consistent with the finding that histidine is a relatively poor substrate for the basic amino acid oxidase.  相似文献   

3.
The basic amino acids, L-arginine, L-lysine, L-ornithine, and to a lesser extent L-histidine, strongly stimulate the O2 uptake of cell suspensions of the blue-green alga or cyanobacterium Anacystis nidulans. In the case of L-histidine, the extra O2 consumption is associated with the formation in vivo of small amounts of HCN, particularly in an atmosphere of O2. The enzyme responsible for both the stimulated O2 uptake with the basic amino acids and the formation of HCN from histidine has been isolated and identified as an L-amino acid oxidase specific for the basic amino acids. The purification (15 000-fold) of this enzyme is described. The isolated enzyme is inhibited by o-phenanthroline, which has a similar inhibitory effect on the O2 uptake of cell suspensions with (and without) added amino acids.The basic amino acid oxidase, which is not inhibited by HCN, can be regarded as an ‘alternate’ oxidase in A. nidulans. An oxidase sensitive to HCN is apparently also operative. At high concentrations of lysine or arginine added HCN can almost double the initial rate of O2 consumption of cell suspensions. This can be attributed to the inhibition of catalase by HCN. At low concentrations of the amino acids, and with more prolonged incubation time, HCN becomes inhibitory. One interpretation could be that the HCN-sensitive terminal oxidase is also involved in the extra O2 uptake elicited by the basic amino acids, but other interpretations are possible. The extra O2 uptake elicited by histidine is almost completely inhibited by HCN, which is consistent with the finding that histidine is a relatively poor substrate for the basic amino acid oxidase.  相似文献   

4.
Summary As part of an effort to identify the natural precursor(s) of HCN in the alga Chlorella vulgaris Beijerinck, and in leaves of New Zealand spinach (Tetragonia expansa, Murr.), HCN release was measured after addition of various amino acids to illuminated algal extracts and grana preparations. Histidine is particularly effective as an HCN precursor, both with Chlorella extracts and leaf grana. With the algal extracts, d-histidine is about ten times more effective than l-histidine and histamine, whereas the two isomers (and histamine) are about equally effective with leaf grana. In the presence of leaf grana plus added Mn2+ and peroxidase, l-tyrosine and l-cysteine like-wise cause HCN formation; but these amino acids cause little or no HCN formation in the presence of Chlorella extracts. A stimulation of HCN production by l-histidine was observed with intact Chlorella cells. Because of the limitations of the assay method, the possibility can not be excluded that other substances than histidine may also lead to HCN generation in Chlorella vulgaris, but the results show that histidine has an important role in HCN generation by this species.Abbreviation POD peroxidase  相似文献   

5.
l-amino acid oxidases of Proteus rettgeri.   总被引:4,自引:2,他引:2       下载免费PDF全文
Proteus rettgeri has been found to contain two separable 1-amino acid oxidases. Both enzymes are particulate in nature, neither being ribosomal bound. One of these enzymes appears to have broad specificity, being active toward monoaminomonocarboxylic, imino, aromatic, sulfur-containing, and beta-hydroxyamino acids. The other enzyme has more limited specificity, catalyzing the oxidative deamination of the basic amino acids and citrulline. The affinity of this oxidase for the various substrates at pH 7.6 in decreasing order is arginine, histidine, ornithine, citrulline, and lysine. This enzyme has a particularly high affinity for arginine (Km equal to 0.27 mM), and anomalous kinetics are observed with increasing substrate concentrations. When concentrations of arginine greater than 1.0mM were added to the reaction containing histidine, imidazole pyruvate formation was completely inhibited.  相似文献   

6.
New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance.

The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu+2) introduced p-aminobenzamidine (pABA- Cu+2: guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu+2 preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (Kcat, Km, Kcat/Km), optimum pH and temperature of the trypsin-pABA-Cu+2 complex was also investigated.  相似文献   

7.
1. Membrane-bound (particulate) and soluble amino acid 2-naphthylamidases (EC 3.5.1.-) were present in subcellular fractions of epidermis from pig and human. 2. The particulate enzymes exhibited Michaelis-Menten kinetics, with Km 5.1x10(-5) (pig) and Km 7.3x10(-5)M (human) for the substrate L-leucine 2-naphthylamide. They were inhibited by puromycin and partially inhibited by EDTA. They did not require heavy metals and were not inhibited by thiol-group-blocking agents. Their pH optima were 7.0 (human) and 6.6 (pig). The particulate enzyme from pig epidermis retained 50% activity after 30 min at 70 degrees C. 3. The soluble amino acid 2-naphthylamidases gave sigmoidal curves for reaction velocity versus substrate concentration, and the kinetic data suggested that there was positive co-operativity between binding sites. This co-operativity was lost after treatment with 0.1mM-p-hydroxymercuribenzoate and the enzymes showed first-order kinetics at low substrate concentrations. The soluble enzymes were inhibited by puromycin and by thiol-group-blocking agents and activated by dithiothreitol. They were inactivated above 60 degrees C and lost activity on storage, but this could be restored with dithiothreitol. 4. The amino acid 2-naphthylamidases of human epidermis were much more active (2.5 times) towards L-alanine 2-naphthylamide than towards the commonly used substrate L-leucine 2-naphthylamide. 5. The kinetics of both the solube and particulate enzymes from epidermis of some elderly patients with either diabetes or ischaemia showed some differences from the kinetics of enzymes from healthy epidermis from younger individuals.  相似文献   

8.
N Yoshida  Y Sakai  M Serata  Y Tani    N Kato 《Applied microbiology》1995,61(12):4487-4489
Fructosyl amino acid oxidase, and enzyme that can be used for the determination of glycated proteins in blood samples from diabetic patients, was used to screen cultures in our microorganism culture collection. Fructosyl amino acid oxidase was found only in the strains of four genera of fungi, Aspergillus, Fusarium, Gibberella, and Penicillium and exhibited different substrate specificities against fructosyl valine and N epsilon-fructosyl N alpha-Z-lysine. A fructosyl valine-specific enzyme from Penicillium janthinellum AKU3413 was monomeric (M(r), 49,000), was most active at 35 degrees C and pH 8.0, and had a covalently bound flavin adenine dinucleotide as a prosthetic group.  相似文献   

9.
S Blumberg  B L Vallee 《Biochemistry》1975,14(11):2410-2419
Synthesis of a series of active N-hydroxysuccinimide esters of aliphatic and aromatic amino acids has yielded a new class of reagents for the covalent modification of proteolytic enzymes such as thermolysin. The activities of aliphatic acyl amino acid thermolysins are from 1.7 to 3.6 times greater than that of the native enzyme when hydrolyzing durylacryloyl-Gly-Leu-NH2, the substrate employed most widely. By comparison, the aromatic acylamino acid derivatives are "superactive," their activities being as much as 70-fold greater. Apparently, the aromatic character of the amino acid introduced is a critical variable in the determination of the functional response. The increased activity is completely restored to that of the native enzyme by deacylation with nucleophiles, such as hydroxylamine, and the rate of restoration of native activity is a function of the particular acyl group incorporated. Preliminary evidence regarding the chemical properties of the modified enzyme suggests that tyrosine, rather than lysine, histidine, or arginine, may be the residue modified. The functional consequences of successive modification with different reagents, moreover, indicate that each of them reacts with the same protein residue. The competitive inhibitors beta-phenyl-propionyl-Phe and Zn-2+ do not prevent modification with these active esters. Hence, the site(s) of their inhibitory action differ(s) from that at which modification occurs. The structure of the substrate is also a significant variable which determines the rate at which each acyl amino acid thermolysin hydrolyzes peptides. Depending on the particular substrate, the activity of aromatic derivatives can be as much as 400-fold greater than that of the native enzyme, and the resultant activity patterns can be ordered in a series characteristic for each enzyme derivative.  相似文献   

10.
Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barrel domain with two insertions and a small beta-sandwich domain. The TIM barrel domain is quite similar to the members of the alpha/beta barrel metallo-dependent hydrolase superfamily, especially to Escherichia coli cytosine deaminase. A metal ion was found in the central cavity of the TIM barrel and was tightly coordinated to residues His-80, His-82, His-249, Asp-324, and a water molecule. X-ray fluorescence scan analysis confirmed that the bound metal ion was a zinc ion. An acetate ion, 6 A away from the zinc ion, was also found in the potential active site. In the complex structure with I4AA, a substrate analog, I4AA replaced the acetate ion and contacted with Arg-89, Try-102, Tyr-152, His-185, and Glu-252, further defining and confirming the active site. The detailed structural studies allowed us to propose a zinc-activated nucleophilic attack mechanism for the hydrolysis reaction catalyzed by the enzyme.  相似文献   

11.
Substituted primary hydroxamic acids were found to inhibit the catalytic activity of a number of redox enzymes. The inhibition was not related to the nature of the metal-active site of the enzyme nor to the nature of the oxygen-containing substrate. Two easily available enzymes, mushroom tyrosinase (monophenol,dihydroyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) and horseradish peroxidase (donor:hydrogen-peroxide oxidoreductase, EC 1.11.1.7), which were potently inhibited by hydroxamic acids, were chosen for more detailed study. A kinetic analysis of the inhibitory effects on the partially purified tyrosinase of mushroom (Agaricus bispora) revealed that inhibition was reversible and competiitive with respect to reducing substrate concentration, but was not competitive with respect to molecular oxygen concentration. A spectrophotometric and EPR study of the binding of salicylhydroxamic acid to horseradish peroxidase revealed that his hydroxamic acid was bound to the enzyme in the same manner as a typical substrate, hydroquinone. Spectroscopic and thermodynamic measurements of the binding reactions suggested that this binding site is close, to but, not directly onto, the heme group of the enzyme. From these results it is concluded that the mode of inhibition of hydroxamic acid need not be, as generally supposed, by metal chelation, and mechanisms involving either hydrogen bonding at the reducing substrate binding site or the formation of a charge transfer complex between hydroxamic acid and an electron-accepting group in the enzyme are considered to be more feasible. The relevance of these findings to deductions on the nature of other hydroxamic acid-inhibitable systems is discussed.  相似文献   

12.
Angiotensin I-converting enzyme [EC 3.4.15.1] was rapidly and highly purified from a particulate fraction of hog kidney cortex with 13% yield. The procedure, which was rapid, included fractionation on DEAE-cellulose and calcium phosphate gel, chromatographies on DEAE-Sephadex A-50 and hydroxylapatite columns, and gel filtration on a Sephadex G-200 column. The purified enzyme preparation gave two protein bands on standard disc gel electrophoresis, but showed a single protein component on the gel after treatment with neuraminidase [EC 3.2.1.18]. The data strongly suggest that the purified enzyme preparation was a mixture of sialo- and asialo-enzyme. Sialic acid residues apparently do not contribute to the catalytic activity of the enzyme. The enzyme was activated more by chloride ions than by other halide ions tested, using Bz-Gly-Gly-Gly as a substrate. The dissociation constant for chloride ions was determined to be 2.2 mM. Chloride did not protect the enzyme against heat or low pH. The enzyme was resistant to inactivation by trypsin [EC 3.4.21.4] and chymotrypsin [EC 3.4.21.1].  相似文献   

13.
The crystal structure of NADH peroxidase (EC 1.11.1.1) from Streptococcus faecalis 10C1 (Enterococcus faecalis) has been refined to a resolution of 2.16 A using the simulated annealing method. The final crystallographic R-factor is 17.7% for all data in the resolution range 7 to 2.16 A. The standard deviations are 0.015 A in bond lengths and 3.0 degrees in bond angles for the final model, which includes all 447 amino acid residues, one FAD and 369 water molecules. The enzyme is a symmetrical tetramer with point group D2; the symmetry is crystallographic. The redox center of the enzyme consists of FAD and a cysteine (Cys42), which forms a sulfenic acid (Cys-SOH) in its oxidized state. A histidine (His10) close to Cys42 is likely to act as an active-site base. In the analyzed crystal, the enzyme was in a non-native oxidation state with Cys42 oxidized to a sulfonic acid Cys-SO3H. The chain fold of NADH peroxidase is similar to those of disulfide oxidoreductases. A comparison with glutathione reductase, a representative of this enzyme family, is given.  相似文献   

14.
Nitrosomonas europaea oxidizes ammonia to nitrite, thereby deriving energy for growth. Glutamate dehydrogenase (NADP+) (EC 1.4.1.4) is the main route for the incorporation of ammonia into glutamic acid, because glutamate synthase (NADPH)(EC 1.4.1.13) was not detected in cell-free extracts of N. europaea. Some properties of a partially purified glutamine synthetase (EC 6.3.1.2) have been determined, namely the effects of pH and metal ions, substrate requirements, Km and Ki values, based on biosynthetic and gamma-glutamyltransferase (EC 2.3.2.2) assays. The molecular weight of the enzyme preparation was approximately 440 000. The gamma-glutamyltransferase activity was markedly inhibited by alanine, lysine, glutamic acid, aspartic acid and serine and to a lesser extent by glycine, asparagine, arginine and histidine. Except for tryptophan and cystine, the gamma-glutamyltransferase activity was inhibited to a greater extent by these amino acids than was the biosynthetic activity. Different pairs of amino acids in various combinations resulted in a cumulative inhibition of enzyme activity determined by either method. Of the various nucleotides tested, the gamma-glutamlytransferase activity of the enzyme was inhibited to a greater extent by di- and triphosphate nucleotides--IDP, CDP, UDP, ITP, CTP, TTP and ATP (except GDP and GTP) than by monophosphate nucleotides except AMP. Saturating concentrations of pyruvate, oxalate, oxaloacetate and alpha-ketoglutarate depressed enzyme activity. Various combinations of amino acids with adenine nucleotides exerted cumulative inhibitory effects on the transferase activity.  相似文献   

15.
The flavoenzyme d-aspartate oxidase from beef kidney (DASPO, EC 1.4. 3.1) has been overexpressed in Escherichia coli. A purification procedure, faster than the one used for the enzyme from the natural source (bDASPO), has been set up yielding about 2 mg of pure recombinant protein (rDASPO) per each gram of wet E. coli paste. rDASPO has been shown to possess the same general biochemical properties of bDASPO, except that the former contains only FAD, while the latter is a mixture of two forms, one active containing FAD and one inactive containing 6-OH-FAD (9-20% depending on the preparation). This results in a slightly higher specific activity (about 15%) for rDASPO compared to bDASPO and in facilitated procedures for apoprotein preparation and reconstitution. Redox potentials of -97 mV and -157 mV were determined for free and l-(+)-tartrate complexed DASPO, respectively, in 0.1 M KPi, pH 7.0, 25 degrees C. The large positive shift in the redox potential of the coenzyme compared to free FAD (-207 mV) is in agreement with similar results obtained with other flavooxidases. rDASPO has been used to assess a possible oxidative activity of the enzyme towards a number of compounds used as agonists or antagonists of neurotransmitters, including d-aspartatic acid, d-glutamic acid, N-methyl-d-aspartic acid, d,l-cysteic acid, d-homocysteic acid, d, l-2-amino-3-phosphonopropanoic acid, d-alpha-aminoadipic acid, d-aspartic acid-beta-hydroxamate, glycyl-d-aspartic acid and cis-2, 3-piperidine dicarboxylic acid. Kinetic parameters for each substrate in 50 mM KPi, pH 7.4, 25 degrees C are reported.  相似文献   

16.
Effects of polyamine and metal ions on the new type of acid phosphatase purified from potato (Solanum tuberosum L. Irish Cobbler) tubers were analyzed. The enzyme belongs to nonspecific acid phosphatase family (EC 3.1.3.2), which hydrolyzes various phosphorylated substrates. The enzyme hydrolyzed inorganic pyrophosphate as a preferred substrate, and exhibited the hyperbolic kinetics with respect to the substrate, inorganic pyrophosphate in the absence of metal cations. Polyamine activated the enzyme effectively by lowering the K(m) value without appreciable changes in the maximal velocity. The most effective polyamines as activators were spermine and spermidine. Mg(2+) ion increased the K(m) value without affecting the maximal velocity of the enzyme, but Ca(2+) ion decreased both the K(m) and V(max) values. Increasing concentrations of spermine also decreased the K(m) value irrespective of Mg(2+) ion included, but gave a constant K(m) and V(max) values in the absence and presence of Ca(2+) ion. Action of spermine and metal ions can be explained by the complex formation with the substrate pyrophosphate. The acid phosphatase from potato can utilize the pyrophosphate-spermine or pyrophosphate-Ca(2+) complex as the preferred substrates. However, the enzyme can use the pyrophosphate-Mg complex with a weak affinity for the active site. Polyamine activates acid phosphatase in the absence and presence of metal cations, and activation by polyamine of the enzyme may contribute to the stimulation of starch biosynthesis and the control of glycolysis/gluconeogenesis by regulating PPi levels in growing potato tubers.  相似文献   

17.
The activity of diamine oxidase [EC 1.4.3.6] (DAO) isolated from pea cotyledons was measured in Britton-Robinson buffers at pH range 5.0-9.6 by spectrophotometric method with E-1,4-diamino-2-butene as substrate. The enzyme has the highest activity at pH = 7.7 and in pH greater than 8.0 it is irreversible denaturated with time. The dissociation constants of the enzyme and enzyme-substrate complex were calculated by Dixon's method from plots of log Vmax, log KM and log Vmax/KM against pH. The pKEA = 6.5 suggests that histidine is in active site of DAO.  相似文献   

18.
The gene encoding the fructosyl-amino acid oxidase (fructosyl-alpha-L-amino acid: oxygen oxidoreductase (defructosylating); EC 1.5.3) of Corynebacterium sp. 2-4-1 was cloned and expressed in Escherichia coli. The gene consists of 1,116 nucleotides and encodes a protein of 372 amino acids with a predicted molecular mass of 39,042. The open reading frame was confirmed as the gene of the fructosyl-amino acid oxidase by comparison with the N-terminal amino acid sequence of the purified fructosyl-amino acid oxidase from Corynebacterium sp. 2-4-1. The sequence of the AMP-binding motif, GXGXXG, was found in the deduced N-terminal region. The amino acid sequence of the fructosyl-amino acid oxidase showed no similarity to that of fungal fructosyl-amino acid oxidases. In addition, substrate specificities of this fructosyl-amino acid oxidase were different from those of other fructosyl-amino acid oxidases. The fructosyl-amino acid oxidase of Corynebacterium sp. 2-4-1 is an enzyme that has unique substrate specificity and primary structure in comparison with fungal fructosyl-amino acid oxidases.  相似文献   

19.
1. Sarcosine was oxidized by D-amino-acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating), EC 1.4.3.3) to yield methylamine and glyoxylic acid. A seriies of N-alkyl glycines were also oxidized by this enzyme. 2. N-Acetyl- and N-Phenylglycine inhibited the oxidase by competing with the substrate, while N-methyl-N-acetylglycine did not bind to the enzyme. This suggests the requirement of at least one unsubstituted hydrogen atom at the amino group ofglycine for binding. 3. The primary step in the reaction was the release of a proton from the substrate, indicating the formation of a substituted imino acid, which was spontaneously hydrolyzed to glyoxylic acid acid and an amine.  相似文献   

20.
The redox properties of D-amino acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating) EC1.4.3.3) have been measured at 18 degrees C in 20 mM sodium pyrophosphate, pH 8.5, and in 50 mM sodium phosphate, pH 7.0. Over the entire pH range, 2 eq are required per mol of FAD in D-amino acid oxidase for reduction to the anion dihydroquinone. The red anion semiquinone is thermodynamically stable as indicated by the separation of the electron potentials and the quantitative formation of the semiquinone species. The first electron potential is pH-independent at -0.098 +/- 0.004 V versus SHE while the second electron potential is pH-dependent exhibiting a 0.060 mV/pH unit slope. The redox behavior of D-amino acid oxidase is consistent with that observed for other oxidase enzymes. On the other hand, the behavior of the benzoate-bound enzyme under the same conditions is in marked contrast to the thermodynamics of free D-amino acid oxidase. Spectroelectrochemical experiments performed on inhibitor-bound (benzoate) D-amino acid oxidase show that benzoate binding regulates the redox properties of the enzyme, causing the energy levels of the benzoate-bound enzyme to be consistent with the two-electron transfer catalytic function of the enzyme. Our data are consistent with benzoate binding at the enzyme active site destroying the inductive effect of the positively charged arginine residue. Others have postulated that this positively charged group near the N(1)C(2) = O position of the flavin controls the enzyme properties. The data presented here are the clearest examples yet of enzyme regulation by substrate which may be a general characteristic of all flavoprotein oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号