共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion. 相似文献
2.
3.
Molecular modeling showed interactions of Tyr (290(6.58)) in transmembrane domain 6 of the GnRH receptor with Tyr (5) of GnRH I, and His (5) of GnRH II. The wild-type receptor exhibited high affinity for [Phe (5)]GnRH I and [Tyr (5)]GnRH II, but 127- and 177-fold decreased affinity for [Ala (5)]GnRH I and [Ala (5)]GnRH II, indicating that the aromatic ring in position 5 is crucial for receptor binding. The receptor mutation Y290F decreased affinity for GnRH I, [Phe (5)]GnRH I, GnRH II and [Tyr (5)]GnRH II, while Y290A and Y290L caused larger decreases, suggesting that both the para-OH and aromatic ring of Tyr (290(6.58)) are important for binding of ligands with aromatic residues in position 5. Mutating Tyr (290(6.58)) to Gln increased affinity for Tyr (5)-containing GnRH analogues 3-12-fold compared with the Y290A and Y290L mutants, suggesting a hydrogen-bond between Gln of the Y290Q mutant and Tyr (5) of GnRH analogues. All mutations had small effects on affinity of GnRH analogues that lack an aromatic residue in position 5. These results support direct interactions of the Tyr (290(6.58)) side chain with Tyr (5) of GnRH I and His (5) of GnRH II. Tyr (290(6.58)) mutations, except for Y290F, caused larger decreases in GnRH potency than affinity, indicating that an aromatic ring is important for the agonist-induced receptor conformational switch. 相似文献
4.
5.
Clumping factor A (ClfA) is a cell surface-associated protein of Staphylococcus aureus that promotes binding of this pathogen to both soluble and immobilized fibrinogen (Fg). Previous studies have localized the Fg-binding activity of ClfA to residues 221-559 within the A region of this protein. In addition, the C-terminal part of the A region (residues 484-550) has been implicated as being important for Fg binding. In this study, we further investigate the involvement of this part of ClfA in the interaction of this protein with Fg. Polyclonal antibodies generated against a recombinant protein encompassing residues 500-559 of the A region inhibited the interaction of both S. aureus and recombinant ClfA with immobilized Fg in a dose-dependent manner. Using site-directed mutagenesis, two adjacent residues, Glu(526) and Val(527), were identified as being important for the activity of ClfA. S. aureus expressing ClfA containing either the E526A or V527S substitution exhibited a reduced ability to bind to soluble Fg and to adhere to immobilized Fg. Furthermore, bacteria expressing ClfA containing both substitutions were almost completely defective in Fg binding. The E526A and V527S substitutions were also introduced into recombinant ClfA (rClfA-(221-559)) expressed in Escherichia coli. The single mutant rClfA-(221-559) proteins showed a significant reduction in affinity for both immobilized Fg and a synthetic fluorescein-labeled C-terminal gamma-chain peptide compared with the wild-type protein, whereas the double mutant rClfA-(221-559) protein was almost completely defective in binding to either species. Substitution of Glu(526) and/or Val(527) did not appear to alter the secondary structure of rClfA-(221-559) as determined by far-UV circular dichroism spectroscopy. These data suggest that the C terminus of the A region may contain at least part of the Fg-binding site of ClfA and that Glu(526) and Val(527) may be involved in ligand recognition. 相似文献
6.
Lu ZL Gallagher R Sellar R Coetsee M Millar RP 《The Journal of biological chemistry》2005,280(33):29796-29803
The human gonadotropin-releasing hormone (GnRH) receptor is evolutionarily configured for high affinity binding of GnRH I ([Tyr(5),Leu(7),Arg(8)]GnRH) but at lower affinity for GnRH II ([His(5),Trp(7),Tyr(8)]GnRH). GnRH I is more potent in the activation of the G(q/11) protein in the gonadotrope; however, GnRH II is more potent in the stimulation of apoptosis and antiproliferative effects through activating G(i) protein-mediated signaling, implying that GnRH I and II selectively stabilize different receptor-active conformations that preferentially couple to different signaling pathways. Receptor activation involves ligand induction or conformational selection, but the molecular basis of the communication between ligand-binding sites and receptor allosteric sites remains unclear. We have sought conformational coupling between receptor-ligand intermolecular interactions and intramolecular interaction networks in the human GnRH receptor by mutating remote residues that induce differential ligand binding affinity shifts for GnRH I and II. We have demonstrated that certain Ala mutations in the intracellular segments of transmembrane domains 3 (Met(132)), 5 (Met(227)), 6 (Phe(272) and Phe(276)), and 7 (Ile(322) and Tyr(323)) of the human GnRH receptor allosterically increased ligand binding affinity for GnRH II but had little effect on GnRH I binding affinity. We examined the role of the three amino acids that differ in these two ligands, and we found that Tyr(8) in GnRH II plays a dominant role for the increased affinity of the receptor mutants for GnRH II. We propose that creation of a high affinity binding site for GnRH II accompanies receptor conformational changes, i.e."induced fit" or "conformational selection," mainly determined by the intermolecular interactions between Tyr(8) and the receptor contact residues, which can be facilitated by disruption of particular sets of receptor-stabilizing intramolecular interactions. The findings suggest that GnRH I and II binding may selectively stabilize different receptor-active conformations and therefore different ligand-induced selective signaling described previously for these ligands. 相似文献
7.
Bliss SP Navratil AM Breed M Skinner DC Clay CM Roberson MS 《Molecular endocrinology (Baltimore, Md.)》2007,21(2):538-549
Our previous work demonstrated that the type I GnRH receptor (GnRHR) resides exclusively and constitutively within membrane rafts in alphaT3-1 gonadotropes and that this association was necessary for the ability of the receptor to couple to the ERK signaling pathway. G(alphaq), c-raf, and calmodulin have also been shown to reside in this compartment, implicating a raft-associated multiprotein signaling complex as a functional link between the GnRHR and ERK signaling. In the studies reported here, we used subcellular fractionation and coimmunoprecipitation to analyze the behavior of ERKs with respect to this putative signaling platform. ERK 2 associated partially and constitutively with low-density membranes both in alphaT3-1 cells and in whole mouse pituitary. Cholesterol depletion of alphaT3-1 cells reversibly blocked the association of both the GnRHR and ERKs with low-density membranes and uncoupled the ability of GnRH to activate ERK. Analysis of the kinetics of recovery of ERK inducibility after cholesterol normalization supported the conclusion that reestablishment of the association of the GnRHR and ERKs with the membrane raft compartment was not sufficient for reconstitution of signaling activity. In alphaT3-1 cells, the GnRHR and ERK2 coimmunoprecipitated from low-density membrane fractions prepared either in the presence or absence of detergent. The GnRHR also partitioned into low-density, detergent-resistant membrane fractions in mouse pituitary and coimmunoprecipitated with ERK2 from these fractions. Collectively, these data support a model in which coupling of the GnRHR to the ERK pathway in gonadotropes involves the assembly of a multiprotein signaling complex in association with specialized microdomains of the plasma membrane. 相似文献
8.
The rat hepatic asialoglycoprotein receptor mediates clearance of galactose- and N-acetylgalactosamine-terminated glycoproteins by endocytosis, binding ligands through a C-type, Ca(2+)-dependent carbohydrate-recognition domain (CRD) at extracellular pH and releasing them at lower pH in endosomes. At physiological Ca(2+) concentrations, the midpoint for ligand release from the CRD of the major subunit of the receptor is pH 7.1. In contrast, the midpoint is pH 5.0 for a galactose-binding derivative of the homologous C-type CRD of serum mannose-binding protein, which would thus not efficiently release ligand at an endosomal pH of 5.4. Site-directed mutagenesis of the CRD from the major subunit of the asialoglycoprotein receptor has been used to identify residues that are essential for efficient release of ligand at endosomal pH. The effects of changes to residues His(256), Asp(266), and Arg(270) singly and in combination indicate that these residues reduce the affinity of the CRD for Ca(2+), so that ligands are released at physiological Ca(2+) concentrations. The proximity of these three residues to the ligand-binding site at Ca(2+) site 2 of the domain suggests that they form a pH-sensitive switch for Ca(2+) and ligand binding. Introduction of histidine and aspartic acid residues into the mannose-binding protein CRD at positions equivalent to His(256) and Asp(266) raises the pH for half-maximal binding of ligand to 6.1. The results, as well as sequence comparisons with other C-type CRDs, confirm the importance of these residues in conferring appropriate pH dependence in this family of domains. 相似文献
9.
Y Yamano K Ohyama S Chaki D F Guo T Inagami 《Biochemical and biophysical research communications》1992,187(3):1426-1431
To determine the specific mechanism of ligand binding to angiotensin (Ang II) receptor AT1, mutagenized rat receptor cDNAs were expressed transiently in COS-7 cells and the effect of the mutations on the binding to peptidic and non-peptidic ligands was analyzed by Scatchard plots. Mutation of Lys199 to Gln in the intramembrane domain strongly reduced the affinity to both [125I] Ang II and [125I]-1Sar, 8Ile-Ang II whereas mutation of two other Lys had little effect, indicating involvement of Lys199 in binding ligands. Replacement of each of four Cys in the extracellular domain markedly reduced binding affinity, indicating the importance of two putative disulfide bridges in the formation of active receptor conformation. Substitution of Asp for Asn in N-glycosylation had no effect on ligand binding or expression of the receptor. These studies indicate mutated receptors are expressed in the plasma membrane and are amenable for further detailed studies. 相似文献
10.
Cui J Smith RG Mount GR Lo JL Yu J Walsh TF Singh SB DeVita RJ Goulet MT Schaeffer JM Cheng K 《Molecular endocrinology (Baltimore, Md.)》2000,14(5):671-681
The dog GnRH receptor was cloned to facilitate the identification and characterization of selective nonpeptide GnRH antagonists. The dog receptor is 92% identical to the human GnRH receptor. Despite such high conservation, the quinolone-based nonpeptide GnRH antagonists were clearly differentiated by each receptor species. By contrast, peptide antagonist binding and functional activity were not differentiated by the two receptors. The basis of the differences was investigated by preparing chimeric receptors followed by site-directed mutagenesis. Remarkably, a single substitution of Phe313 to Leu313 in the dog receptor explained the major differences in binding affinities and functional activities. The single amino acid replacement of Phe313 of the human receptor with Leu313 resulted in a 160-fold decrease of binding affinity of the nonpeptide antagonist compound 1. Conversely, the replacement of Leu313 of the dog receptor with Phe313 resulted in a 360-fold increase of affinity for this compound. These results show that Phe313 of the GnRH receptor is critical for the binding of this structural class of GnRH antagonists and that the dog receptor can be "humanized" by substituting Leu for Phe. This study provides the first identification of a critical residue in the binding pocket occupied by nonpeptide GnRH antagonists and reinforces cautious extrapolation of ligand activity across highly conserved receptors. 相似文献
11.
Casula MA Bromidge FA Pillai GV Wingrove PB Martin K Maubach K Seabrook GR Whiting PJ Hadingham KL 《Journal of neurochemistry》2001,77(2):445-451
L-655,708 is a ligand for the benzodiazepine site of the gamma-aminobutyric acid type A (GABA(A)) receptor that exhibits a 100-fold higher affinity for alpha5-containing receptors compared with alpha1-containing receptors. Molecular biology approaches have been used to determine which residues in the alpha5 subunit are responsible for this selectivity. Two amino acids have been identified, alpha5Thr208 and alpha5Ile215, each of which individually confer approximately 10-fold binding selectivity for the ligand and which together account for the 100-fold higher affinity of this ligand at alpha5-containing receptors. L-655,708 is a partial inverse agonist at the GABA(A) receptor which exhibited no functional selectivity between alpha1- and alpha5-containing receptors and showed no change in efficacy at receptors containing alpha1 subunits where amino acids at both of the sites had been altered to their alpha5 counterparts (alpha1Ser205-Thr,Val212-Ile). In addition to determining the binding selectivity of L-655,708, these amino acid residues also influence the binding affinities of a number of other benzodiazepine (BZ) site ligands. They are thus important elements of the BZ site of the GABA(A) receptor, and further delineate a region just N-terminal to the first transmembrane domain of the receptor alpha subunit that contributes to this binding site. 相似文献
12.
13.
Yamamoto H Miura R Yamamoto T Shinohara K Watanabe M Okuyama S Nakazato A Nukada T 《FEBS letters》1999,445(1):19-22
The type 1 sigma receptor expressed in Xenopus oocytes showed binding abilities for the sigma-1 ligands, [3H](+)pentazocine and [3H]NE-100, with similar kinetic properties as observed in native tissue membranes. Amino acid substitutions (Ser99Ala, Tyr103Phe and di-Leu105,106di-Ala) in the transmembrane domain did not alter the expression levels of the type 1 sigma receptor as determined by immunoblot analysis using an anti-type 1 sigma receptor antiserum. By contrast, ligand binding was significantly suppressed by the substitutions. These findings provide evidence that the transmembrane domain of the type 1 sigma receptor plays a critical role in ligand binding of this receptor. 相似文献
14.
Wuytens G Verschueren K de Winter JP Gajendran N Beek L Devos K Bosman F de Waele P Andries M van den Eijnden-van Raaij AJ Smith JC Huylebroeck D 《The Journal of biological chemistry》1999,274(14):9821-9827
Activins are members of the transforming growth factor-beta family of growth and differentiation factors. In this paper, we report the results of a structure-function analysis of activin A. The primary targets for directed mutagenesis were charged, individual amino acids located in accessible domains of the protein, concentrating on those that differ from transforming growth factor-beta2, the x-ray crystal structure of which is known. Based on the activities of the recombinant activin mutants in two bioassays, 4 out of 39 mutant proteins (D27K, K102A, K102E, and K102R) produced in a vaccinia virus system were selected for further investigation. After production in insect cells and purification of these four mutants to homogeneity, they were studied in bioassays and in cross-linking experiments involving transfected receptor combinations. Mutant D27K has a 2-fold higher specific bio-activity and binding affinity to an ActRIIA/ALK-4 activin receptor complex than wild type activin, whereas mutant K102E had no detectable biological activity and did not bind to any of the activin receptors. Mutant K102R and wild type activin bound to all the activin receptor combinations tested and were equipotent in bioassays. Our results with the Lys-102 mutants indicate that the positive charge of amino acid 102 is important for biological activity and type II receptor binding of activins. 相似文献
15.
Goldfish pituitary gonadotropin-releasing hormone (GnRH) receptors were characterized by using a superagonist analog of teleost GnRH (tGnRH-A; [D-Arg6, Trp7, Leu8, Pro9-NHEt]-GnRH). Equilibrium binding of 125I-tGnRH-A to a goldfish pituitary membrane preparation was achieved after a 30-min incubation at 4 degrees C; binding was significantly reduced after increasing incubation temperature to 22 degrees C. Binding of the radioligand was a function of tissue concentration, with a linear correlation over the range of 0.5-2 pituitary per tube. Incubation of the pituitary membrane preparation with increasing concentrations of 125I-tGnRH-A indicated saturable binding at radioligand concentrations of 470 pM and above. The binding of 125I-tGnRH-A was found to be reversible after addition of the cold analog, and the dissociation curve could be resolved into two linear components; slower rates of dissociation of 125I-tGnRH-A were observed after the addition of excess unlabeled tGnRH than after the addition of tGnRH-A, indicating that the analog is more effective in displacing the label than the native peptide. Addition of the cold analog displaced bound 125I-GnRH-A, and Scatchard analysis suggested the presence of at least two classes of binding sites: a high-affinity/low-capacity site and a low-affinity/high-capacity site. Bound 125I-GnRH-A was displaced by tGnRH from both sites in parallel to that observed with tGnRH-A, indicating that both peptides bind to the same classes of binding sites; however, tGnRH-A had a greater affinity for the receptors than the native tGnRH. These results demonstrated the presence and provided characterization of GnRH receptors in goldfish pituitary. 相似文献
16.
Conserved negatively charged residues are not required for ATP action at P2X(1) receptors. 总被引:5,自引:0,他引:5
S J Ennion J Ritson R J Evans 《Biochemical and biophysical research communications》2001,289(3):700-704
The role of conserved negatively charged aspartic (D) and glutamic (E) acid residues within the ectodomain of the human P2X(1) receptor were examined by alanine substitution mutagenesis. Effects on ATP potency and cell surface localisation were assessed in Xenopus oocytes using the two electrode voltage clamp technique and cell surface biotinylation. Of the eleven residues tested no major shifts in ATP potency were observed with EC(50) values for ATP ranging from 0.8 to 4.3 microM (compared to 1 microM ATP for wild-type P2X(1) receptors). Peak current amplitudes for mutants D86A and D264A where reduced by approximately 90% due to a corresponding reduction in both total protein and cell surface expression. These results demonstrate that individual conserved negatively charged amino acids are not essential for ATP recognition by the human P2X(1) receptor and coordinated binding of the positive charge on magnesium complexed ATP by negatively charged amino acids is not required. 相似文献
17.
ClpB from Escherichia coli is a member of a protein-disaggregating multi-chaperone system that also includes DnaK, DnaJ, and GrpE. The sequence of ClpB contains two ATP-binding domains that are enclosed between the amino-terminal and carboxyl-terminal regions. The N-terminal sequence region does not contain known functional sequence motifs. Here, we performed site-directed mutagenesis of four polar residues within the N-terminal domain of ClpB (Thr7, Ser84, Asp103 and Glu109). These residues are conserved in several ClpB homologs. We found that the mutations, T7A, S84A, D103A, and E109A did not significantly affect the secondary structure and thermal stability of ClpB, nor did they inhibit the self-association of ClpB, its basal ATPase activity, or the enhanced rate of the ATP hydrolysis by ClpB in the presence of poly-L-lysine. We observed, however, that three mutations, T7A, D103A, and E109A, reduced the casein-induced activation of the ClpB ATPase. The same three mutant ClpB variants also showed low chaperone activity in the luciferase reactivation assay. We found, however, that the four ClpB mutants, as well as the wild-type, bound similar amounts of inactivated luciferase. In summary, we have identified three essential amino acid residues within the N-terminal region of ClpB that participate in the coupling between a protein-binding signal and the ATP hydrolysis, and also support the chaperone activity of ClpB. 相似文献
18.
19.
Navratil AM Bliss SP Berghorn KA Haughian JM Farmerie TA Graham JK Clay CM Roberson MS 《The Journal of biological chemistry》2003,278(34):31593-31602
Specialized membrane microdomains known as lipid rafts are thought to contribute to G-protein coupled receptor (GPCR) signaling by organizing receptors and their cognate signaling molecules into discrete membrane domains. To determine if the GnRHR, an unusual member of the GPCR superfamily, partitions into lipid rafts, homogenates of alpha T3-1 cells expressing endogenous GnRHR or Chinese hamster ovary cells expressing an epitope-tagged GnRHR were fractionated through a sucrose gradient. We found the GnRHR and c-raf kinase constitutively localized to low density fractions independent of hormone treatment. Partitioning of c-raf kinase into lipid rafts was also observed in whole mouse pituitary glands. Consistent with GnRH induced phosphorylation and activation of c-raf kinase, GnRH treatment led to a decrease in the apparent electrophoretic mobility of c-raf kinase that partitioned into lipid rafts compared with unstimulated cells. Cholesterol depletion of alpha T3-1 cells using methyl-beta-cyclodextrin disrupted GnRHR but not c-raf kinase association with rafts and shifted the receptor into higher density fractions. Cholesterol depletion also significantly attenuated GnRH but not phorbol ester-mediated activation of extracellular signal-related kinase (ERK) and c-fos gene induction. Raft localization and GnRHR signaling to ERK and c-Fos were rescued upon repletion of membrane cholesterol. Thus, the organization of the GnRHR into low density membrane microdomains appears critical in mediating GnRH induced intracellular signaling. 相似文献