首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low dietary calcium on maternal zinc nutritional status was studied. Two groups of 6 adult female Wistar rats were fed during pregnancy and lactation with experimental diets containing either 0.2 g (LCa) or 0.6 g (NCa) of calcium/100 g. Both diets contained/100 g: 20.0 g protein (potassium caseinate), 3.5 mg Zn, 0.6 g P. A third group (n = 6) was fed a "stock diet" (SG), containing/100 g: 24.8 g protein, 1.5 g Ca, 0.6 g P, 11.6 mg Zn. Maternal blood samples were drawn from the tail before mating (To), at delivery (D) and at weaning (W); dams were sacrificed at weaning and the right femur was excised. Determinations (atomic absorption spectrometry) were: Zinc in red blood cells (RBC), Zn and Ca in ashed femur. The results (mean +/- SD) were: RBCZn (microg/mL) at To: 8.65 +/- 1.80, which did not change in the SG or in the NCa groups, but increased significantly in the LCa group (p < 0.001) (D: 18.20 +/- 4.63; W: 26.70 +/- 6.02), regarding To. Femur Zn (microg/100 mg) showed an increase (p < 0.001) in the LCa group (30.2 +/- 2.1) regarding both SG (25.3 +/- 0.7) and NCa groups (24.1 +/- 0.7). Femur Ca (mg/100 mg) decreased (p < 0.05) in the LCa group (19.2 +/- 0.9) regarding both SG (24.0 +/- 0.5) and NCa groups (21.4 +/- 0.7) and leading to a significant increase in Zn/Ca ratio (p < 0.001) in the LCa group. Therefore, dietary calcium deficiency during pregnancy and lactation would produce an increase of Zn utilization, reflected in the increase of maternal blood Zn levels and in femur Zn content.  相似文献   

2.
Effects of altered dietary zinc on levels of zinc, copper, magnesium, and calcium in organ and peripheral tissues were studied. When rats fed a zinc-deficient diet (1.3 μg Zn/g) for 28 d were compared with rats fed a control diet (37.5 μg Zn/g), levels of zinc were slightly lower in plasma, hair, and skin and 50% lower in femur and pancreas, whereas the levels of copper were higher in all tissue except plasma. Magnesium levels were higher than controls in the heart and lower in the spleen, whereas the calcium levels were lower in plasma, lung, spleen, kidney, and skin and strikingly higher in brain, hair, and femur. When rats fed a zinc-supplemented diet (1.0 mg Zn/g) were compared to the same conrols, levels of zinc in these were higher in all organs and peripheral tissues studied, except heart, lung, and liver; copper levels were higher in liver, kidney, and spleen; magnesium levels were significantly higher in the spleen, but were little affected in other tissues, although calcium levels were higher in pancreas, spleen, kidney, and skin and lower in plasma and hair. These data indicate that overall copper organ and peripheral tissue levels are affected inversely, and zinc and calcium levels directly, by zinc nutriture.  相似文献   

3.
Phytic acid was extracted from sweet potato (Ipomoea batatas) and fed to Wistar rats with or without zinc for 3 weeks. Animals were then sacrificed and bone and faecal minerals were assessed. The ultra-structure of the bones was examined via scanning electron microscopy. Phytic acid extract or commercial phytic acid supplemented diets (D + Zn + PE or D + PE) displayed reduced bone calcium levels (101.27 ± 59.11 and 119.27 ± 45.36 g/kg) compared to the other test groups. Similarly, reduced calcium were observed in the control groups (D + Zn and D) fed formulated diets with or without zinc supplementation (213.14 ± 15.31 and 210 ± 6.88 g/kg) compared to the other test groups. The group fed supplemented commercial phytic acid diet (D + CP) demonstrated the lowest femur magnesium (3.72 ± 0.13 g/kg) while the group fed phytic acid extract supplementation (D + PE) recorded the highest level (4.84 ± 0.26 g/kg) amongst the groups. Femur iron was highest in the group fed commercial phytic acid supplemented diet (D + CP −115.74 ± 2.41 g/kg) compared to the other groups. Faecal magnesium levels were significantly higher in the two test groups fed phytic acid extract with or without zinc (D + Zn + PE or D + PE) compared to all other groups. All the groups which had phytic acid supplemented diets had significantly thinner bone in the trabecular region, compared to the groups fed formulated diet or zinc supplemented formulated diet (D or D + Zn). These observations suggest that the consumption of foods high in phytic acid may contribute to a reduction in the minerals available for essential metabolic processes in rats.  相似文献   

4.
Two experiments were performed to confirm that boron interacts with calcium, and that this interaction can be modified by dietary magnesium and potassium in the rat. Upon manipulating the dietary variables listed above, it was found that under certain conditions, boron and calcium deprivation similarly affected several variables; for example, they both could be made to elevate plasma alkaline phosphatase activity and to depress femur calcium concentration. Under some dietary conditions, both boron and calcium deprivation affected some variables related to blood or iron metabolism. However, the effects of dietary boron and calcium on spleen weight/body weight ratio, hematocrit, and femur iron concentration generally were not similar. Femur copper, magnesium, phosphorus, and zinc also were affected by an interaction between boron and calcium under some dietary conditions. The findings show that there is a relationship between boron and calcium, but they do not clearly indicate the nature of the relationship. However, the data suggest that boron and calcium act on similar systems in the rat.  相似文献   

5.
Calcium, magnesium, and zinc balances were determined in eleven young adult college females (mean age, 24.9±2.35) during a 39-d metabolic study when the subjects were fed an adequate calorie and protein diet based on habitually consumed foods. Analysis showed that the dietary contribution of calcium, magnesium, and zinc to the RDA were 53.6, 26.4, and 57.9%, respectively. Mean fecal losses of calcium and magnesium were low, while fecal zinc losses were higher than the daily intake. Mean urinary excretion of calcium was within the normal range, but was low for magnesium whereas urinary zinc was higher than normal. Mean daily apparent retentions of calcium and magnesium were positive, whereas positive apparent retention for zinc were observed in four of the subjects. Plasma calcium and magnesium remained normal, but mean plasma zinc declined at the end of the study. Significant correlations were observed between the fecal losses of calcium and magnesium and calcium and zinc. Urinary calcium also correlated significantly (P<0.05) with urinary magnesium, but not with zinc. It appears that adequate protein and calorie intake in the presence of low dietary intake of calcium, magnesium, and zinc has no significant effect on calcium and magnesium status whereas a lowering effect on plasma zinc and apparent zinc retention was observed in the subjects studied.  相似文献   

6.
Fortification of a Petit Suisse cheese with zinc sulfate and zinc gluconate stabilized with glycine was used as a tool to overcome zinc-deficiency effects on total-body growth and skeletal growth. Animals were divided in 4 groups of 10 rats: basal (B), control (C), depletion-repletion 1 (DR1), and depletion-repletion 2 (DR2). These four groups were fed with four diets: basal (2 ppm Zn), control (30 ppm Zn), DR1, and DR2; they received a basal diet for 14 d and a control diet for the other 14 d of the experiment, using zinc sulfate for DR1 and zinc gluconate stabilized with glycine for DR2. After 28 d of the experiment, total-body weight and weight gain of the control and DR1 and DR2 animals were not statistically different (p<0.05), Femur weight and femur zinc content of DR1 and DR2 did not achieve the values of control animals (p<0.05), but they were higher than that of basal animals. Our results show that restoration of dietary zinc levels by means of food fortification normalized weight gain, as an indicator of total-body growth, and presented a trend to normalize bone weight, as a marker of skeletal growth, in young rats and independently of the zinc source used.  相似文献   

7.
Mineral balance was studied by metabolic balance techniques in 13 healthy college females aged 21–23 yr. They were fed diet containing 1780 kcal, 2580 kcal, and 25 g protein in a 20-d experiment period. Both diets contained approximately 5.28 mg zinc, 216.85 mg calcium, and 364.3 mg magnesium. The diet consisted of habitually consumed foods. Blood, urine and fecal samples were collected for mineral analysis using atomic absorption spectrophotometry. Plasma mineral levels were not affected by the change in dietary energy intake. Fecal calcium and magnesium were significantly higher when subjects were fed the low calorie (1780 kcal) diet, whereas there was no significant difference in fecal zinc for the two levels of dietary energy. Urinary calcium and magnesium were also significantly higher when the diet provided 1780 kcal though, on the other hand, urinary zinc was significantly higher when the diet provided 2680 kcal (P<0.05). Urinary calcium and magnesium correlated negatively, whereas urinary zinc correlated positively, with the dietary energy intake (P o<0.05). Dietary energy intake has a significant effect on the mineral balance of the subjects.  相似文献   

8.
Dietary protein and zinc deficiencies known to be detrimental to the developing fetus are common in pregnant women in developing countries. Everyone in modern society is at risk of exposure to carbon monoxide (CO). This study was conducted to observe the effect of dietary protein, zinc, and exposure to CO on the fetal zinc concentrations by factorial experimentation. Pregnant mice of CD-1 strain were maintained on 17% (control) or 9% (deficient) protein diets mixed with deficient, normal (control), or supplemental zinc throughout gestation. The dams in each dietary group were exposed to air (control) or 500 ppm CO in air in environmental chambers from gestation day 8 to gestational day 18. The dams were sacrificed on d 18 and fetal zinc levels were measured by atomic absorption spectrophotometry. Carbon monoxide levels used in this study had no significant effect on fetal zinc concentration in any treatment group. When both dietary protein and zinc levels were normal, the mean fetal zinc concentrations were higher than all other dietary protein/zinc combinations (15.2±6.0 and 14.2±4.1 μg Zn/g of tissue for 0 and 500 ppm CO levels). However, when dietary protein levels were deficient, supplemental zinc increased the fetal zinc concentrations significantly (12.7±3.8 and 13.1±0.3.6 μg Zn/g of tissue, in 0 and 500 ppm CO groups) as compared to zinc-deficient groups (8.7±3.0 and 10.0±3.3 μg Zn/g of tissue in 0 and 500 ppm CO groups). The results of this study may be relevant to populations that experience both marginal zinc and protein diets during gestation.  相似文献   

9.
We investigated the effect of magnesium supplementation on zinc distribution in rats given excess calcium as carbonate. Rats were given a control diet (5 g/kg calcium and 0.5 g/kg magnesium), a high calcium diet (HC, 25 g/kg calcium and 0.5 g/kg magnesium) or the high calcium diet supplied with magnesium (HCM, 25 g/kg calcium and 2.5 g/kg magnesium) for 4 weeks. Calcium carbonate and magnesium oxide were used for increasing these mineral concentrations in diets. Although feed intake did not differ among the groups, the excess calcium suppressed feed efficiency, irrespective of dietary magnesium concentration. Femoral magnesium concentration was lower in the HC group than in the control and the HCM groups. Femoral zinc concentration was higher in the HC group and the HCM group than in the control group. The zinc concentration in the kidney was lower in the HC group and the HCM group than in the control group. The excess calcium did not affect zinc concentration in plasma and other tissues such as the liver, testis, and spleen, irrespective of dietary magnesium. These results suggest that the increasing bone zinc and the decreasing renal zinc do not result from magnesium insufficiency in rats given excess calcium as carbonate.  相似文献   

10.
Serum zinc and magnesium levels in patients with blastocystosis   总被引:2,自引:0,他引:2  
The aim of the study was to investigate the total content of the essential elements of zinc and magnesium levels in patients infected with Blastocystis hominis. Zinc and magnesium concentrations were measured in 52 patients who were positive for the intestinal parasite Blastocystis hominis. Scores were obtained for the positives and their age- and sex-matched 60 Blastocystis hominis-negative healthy controls. For comparison of two groups of continuous variables, the independent samples t-test was used. The mean concentration of magnesium in blood was significantly lower in Blastocystis hominis-positive patients than in their controls both in females (p<0.05) and males (p<0.05). The average zinc concentration in Blastocystis hominis-positive female patients was 0.61±0.2 mg/L and 0.60±0.2 mg/L in controls (p>0.05). The mean values of the zinc in blood were 0.62±0.2 mg/L in Blastocystis hominis-positive male patients and 0.82±0.1 in controls (p>0.05). No correlation could be demonstrated between age and mean values of zinc and magnesium in Blastocystis-positive females/males and controls (p>0.05). No significant correlation could be found between blood zinc and magnesium levels in Blastocystis-positive female/male patients and controls (p>0.05). Magnesium levels were found to be clearly decreased, whereas no change was observed in zinc levels in the patients with Blastocystis compared to controls.  相似文献   

11.
In this study, experimental hypothyroidism was established and used to investigate possible alterations in the calcium, magnesium, and zinc homeostasis by assessing their concentration in plasma and erythrocytes. Hypothyroidism was induced by administration of methimazole an iodine blocker at a dose of 75 mg/100 g food for 3 wk. In the methimazole-induced hypothyroid state, the experimental animals showed a significant decrease in plasma zinc concentration, whereas a significant increase in plasma magnesium concentration occurred. No change was observed in plasma calcium concentration. The erythrocyte zinc and calcium concentrations were found to be increased, whereas magnesium concentration decreased. Erythrocyte magnesium concentration showed a significant positive correlation with T4 values. The study provides evidence for marked alterations in homeostatis of zinc, magnesium, and calcium.  相似文献   

12.
The nutritional influence of zinc on markers of bone extracellular matrix resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15 or 30 μg Zn/g diet for 24 days. Femur zinc increased substantially as zinc increased from 5 to 15 μg/g diet and modestly between 15 and 30 μg/g (P<.05). By morphological assessment, trabecular bone increased steadily as dietary zinc increased to 30 μg/g. Increasing dietary zinc tended to decrease Zip2 expression nonsignificantly and elevated the relative expression of metallothionen-I at 15 but not 30 μg Zn/g diet. Femur osteoclastic resorption potential, indicated by matrix metalloproteinases (MMP-2 and MMP-9) and carbonic anhydrase-2 activities decreased with increasing dietary zinc. In contrast to indicators of extracellular matrix resorption, femur tartrate-resistant acid and alkaline phosphatase activities increased fourfold as dietary zinc increased from 2.5 to 30 μg Zn/g. Likewise, 15 or 30 μg Zn/g diet resulted in maximum relative expression of osteocalcin, without influencing expression of core-binding factor α-1, collagen Type 1 alpha-1, or nuclear factor of activated T cells c1. In conclusion, increased trabecular bone with additional zinc suggests that previous requirement estimates of 15 μg Zn/g diet may not meet nutritional needs for optimal bone development. Overall, the up-regulation of extracellular matrix modeling indexes and concomitant decrease in resorption activities as dietary zinc increased from 2.5 to 30 μg/g provide evidence of one or more physiological roles for zinc in modulating the balance between bone formation and resorption.  相似文献   

13.
The zinc, copper, and manganese status of seven children with malabsorption syndromes of varied etiology (MVE) and 12 with inborn errors of metabolism (IEM) receiving semi-synthetic diets was investigated using serum and hair trace element concentrations, dietary trace element intakes, and anthropometric measurements as the principal indices. The hair zinc levels of both test groups and hair manganese levels of the IEM group were significantly lower (p<0.05) than those of their respective healthy controls matched by age, sex, and geographic location, despite comparable dietary zinc and manganese intakes in test and control subjects. Four subjects from the malabsorption and five from the inborn errors group had hair zinc levels below 100 μg/g (range 30–88 μg/g). Of these nine subjects, serum zinc levels were determined for six, and five were less than normal (range 64–74 μg/dL). In contrast, the copper status of the MVE and IEM subjects, as indicated by hair and dietary copper levels, was not lower than the controls. Mean serum copper levels were 136±30 and 171±40 μg/dL for the IEM and MVE groups, respectively. Levels for the MVE subjects were higher than published normal values. The suboptimal zinc and manganese status observed in some of these test subjects probably arose from malabsorption and decreased availability of dietary zinc and manganese. However, the zinc depletion was not severe enough to result in linear growth retardation.  相似文献   

14.
An experiment was performed to determine the effect of a mild magnesium deprivation on calcium metabolism and bone composition, shape, and strength in rats, and whether nickel deprivation exacerbated or alleviated any changes caused by the magnesium deprivation. Weanling male rats were assigned to groups of 10 in a factorial arrangement, with variables being supplemental nickel at 0 and 1 mg/kg and magnesium at 250 and 500 mg/kg of diet. The basal diet contained about 30 ng Ni/g. Urine was collected for 24 h during wk 8 and 12, and rats were euthanized 13 wk after dietary treatments began. Mild magnesium deprivation decreased the urinary excretion of calcium and increased the tibia concentration of calcium but did not affect femur shape or strength (measured by a three-point bending test). Dietary nickel did not alter these effects of magnesium deficiency. Nickel deprivation increased the urinary excretion of phosphorus and the femur strength variables maximum force and moment of inertia. Strength differences might have been the result of changes in bone shape. Magnesium deprivation did not alter the effects of nickel deprivation on bone. The findings indicate that a mild magnesium deficiency affects calcium metabolism but that this does not markedly affect bone strength or shape, and these effects are not modified by dietary nickel. Also, nickel deprivation affects phosphorus metabolism and bone strength and shape; these effects apparently are not caused by changes in magnesium metabolism or utilization.  相似文献   

15.
Summary Data on metal-induced elemental changes in eukaryotic unicellular organisms, such as protozoa, are rare. This study focused on two species of ciliate protozoa,Aspidisca cicada andVorticella convallaria, both common and abundant in activated sludge. Elemental changes in cells exposed to aluminium, copper, and zinc were determined by scanning electron microscopy-electron probe X-ray microanalysis. X-ray emission spectra obtained from cells 2 h after resuspension in Chalkley's medium (control) showed clear, characteristic peaks for magnesium, silicon, phosphorus, sulphur, potassium, and copper. These elements were also routinely detected in all cells resuspended in metal solution. Spectra obtained from cells treated with aluminium or zinc showed additional distinct peaks for aluminium and zinc. In copper-treated cells enhanced copper peaks were seen. Mean aluminium levels were low inA. cicada control cells (0.14mg/g of dry weight) but higher in cells treated with 0.50 ppm (0.69 mg/g of dry weight) and 2.00 ppm aluminium (2.07 mg/g of dry weight).A. cicada was ten times more sensitive to copper than to the other metals, and thanV. convallaria. There was a significantly higher concentration of copper inA. cicada cells treated with 0.20 ppm copper (2.94 mg/g of dry weight) than in control cells (2.16 mg/g of dry weight). InA. cicada cells treated with 0.50 and 2.00 ppm zinc significantly higher levels of zinc (2.41 and 2.07 mg/g of dry weight, respectively) were observed than in the control (0.41 mg/g of dry weight). After treatment with 0.50 ppm and 2.00 ppm aluminium, aluminium was significantly higher in the treatedV. convallaria cells (1.58 and 0.67 mg/g of dry weight, respectively) than in control cells (0.14 mg/g of dry weight). After treatment with 2.00 ppm copper there was significantly more copper in treatedV. convallaria cells (3.63 mg/g of dry weight) than in controls (2.08 mg/g of dry weight). InV. convallaria cells treated with 0.50 ppm and 2.00 ppm zinc there was an increase in the amount of zinc in cells (1.30 and 2.68 mg/g of dry weight, respectively) compared with control cells (0.34 mg/g of dry weight). Data on other changes in intracellular elements in both species, after 2 h exposure to aluminium, copper, and zinc medium are given. In both species, there was uptake and/or accumulation of aluminium, copper, and zinc when the external concentration of the metal was increased. Intracellular elemental levels were altered by sublethal and toxic external concentrations of the metals studied.A. cicada was ten times more sensitive to copper than to aluminium or zinc, and thanV. convallaria to the metals studied.  相似文献   

16.
Erythrocyte metallothionein (E-MT) is considered a promising index of zinc status in humans, since it may be more sensitive than other biochemical indices to changes in dietary zinc. However, conditions of high zinc demand with substantial redistribution of tissue zinc and specific changes in hormone profile, such as pregnancy, may have an influence on E-MT levels in addition to dietary zinc. In this study, we compared E-MT concentrations in relation to other biochemical zinc indices in healthy pregnant women at delivery (n=40) and nonpregnant women (n=22) with similar habitual dietary zinc intakes (average 13.3 mg/d). Pregnant women had lower serum zinc and albumin-bound serum zinc, but higher levels of {ie115-1}-macroglobulin-bound serum zinc than the nonpregnant women. Erythrocyte zinc (E-Zn) was similar in both groups, but E-MT (mean±SE) was slightly but significantly (p<0.05) higher in the pregnant women (2.9±0.09 nmol/g protein) compared to nonpregnant women (2.6±0.06 nmol/g protein). A significant correlation was observed between E-MT and E-Zn in the nonpregnant women (r=0.70;p<0.001), consistent with the role of intracellular zinc in the regulation of metallothionein synthesis. However, such correlation was not observed in the pregnant women, suggesting that E-MT levels in pregnancy may be influenced by factors related to the pregnant state.  相似文献   

17.
Female and male rats weighing about 170 g and 200 g, respectively, were fed diets (approximately 70 microg boron/kg) in a factorial arrangement with supplemental boron at 0 (deficient) and 3 (adequate) mg/kg and canola oil or palm oil at 75 g/kg of diet as variables. After 5 weeks, six females in each treatment were bred. Dams and pups continued on their respective dietary treatments through gestation, lactation and post-weaning. Thirteen weeks after weaning, plasma and bones were collected from 12 male and 12 female offspring in each treatment. Boron supplementation increased femur strength measured by the breaking variable bending moment; tibial calcium and phosphorus concentrations; and plasma alkaline phosphatase. Femur breaking stress was greatest in boron-supplemented rats fed canola oil, and lowest in boron-deprived females fed canola oil; this group also exhibited the lowest femur bending moment. Minerals associated with bone organic matrix, zinc and potassium, were increased by boron supplementation in tibia. Plasma phospholipids were decreased by boron deprivation in females, but not males. Plasma cholesterol was decreased in boron-supplemented males by replacing canola oil with palm oil. The findings suggest that a diet high in omega-3 alpha-linolenic acid promotes femur strength best when the dietary boron is adequate.  相似文献   

18.
Chronic lead exposure irreversibly damages the kidneys and may be associated with hypertension and renal insufficiency at sub-clinically toxic levels. Zinc supplementation reduces lead absorption and tissue retention in rodent models but the mechanisms are unknown. Metallothionein (MT) may function in lead detoxification. Our objective was to investigate the effects of marginal zinc (MZ) and supplemental zinc (SZ) intakes on renal lead and zinc accumulation, renal MT immunolocalization and levels. Weanling Sprague Dawley rats were assigned to MZ (8 mg Zn/kg diet), zinc-adequate control (CT; 30 mg Zn/kg), zinc-adequate diet-restricted (DR; 30 mg Zn/kg) or SZ (300 mg Zn/kg) groups, with and without lead acetate-containing drinking water (200 mg Pb/L) for 3 weeks. Kidneys were analyzed for lead and zinc by inductively coupled plasma spectroscopy and MT by immunolocalization and Western blotting. MZ had higher renal lead and lower renal zinc concentrations than CT. SZ was more protective than CT against renal lead accumulation. Renal MT levels reflected dietary intake (SZ ≥ DR ≥ CT ≥ MZ) but lead had no effect on MT staining intensity, distribution, or relative protein amounts. In summary, while SZ lowered renal lead concentration, MT did not appear to function in renal lead accumulation. Future studies should explore alternate mechanisms of renal lead detoxification.  相似文献   

19.
Dietary factors affecting zinc bioavailability were evaluated according to their relative distribution in the individual daily meals making up the basic diet of 17 institutionalized, mentally handicapped adult women. Mean intake values of zinc, phytate, nonstarch polysaccharides (NSP), calcium, protein, and energy were calculated from a dietary survey of 7 consecutive days, which also served to obtain values for the two zinc bioavailability predictor formulas, phytate/Zn millimolar ratio and [Ca] [phytate]/[Zn][energy] ratio. Mean daily zinc intake was 8.5 ±1.8 mg, with noon and evening meals accounting for the highest contribution to this value (45% and 35%, respectively), whereas breakfast meals’ contribution was 16%. The mean protein intake was 55 ±13 g, with noon and evening meals being the major contributors to total daily intake (42% and 38%, respectively). Breakfast meals accounted for 77% of daily phytate intake, giving a respective phytate/Zn millimolar ratio of 20.4 ±7.6 and a [Ca][phytate]/[Zn][energy] ratio of 336 ±127 mmol/Mcal. Values for both ratios based on noon and evening meals were negligible in comparison. The mean daily NSP intake was 9.8 ±4.2 g, with 53% of total daily intake supplied from breakfast meals, whereas noon and evening meals accounted for 30% and 14%, respectively. The results, while suggesting that zinc bioavailability is unlikely to be adversely affected, indicated that dietary fiber intake levels are probably inadequate, particularly in view of the nonambulant condition and low physical activity prevalent in such individuals, who may, as a consequence, be susceptible to health disorders associated with impaired bowel function and constipation.  相似文献   

20.
The aim of the study was to investigate the changes of total content of the essential elements of zinc and magnesium levels in patients infected with Giardia intestinalis. Zinc and magnesium concentrations were measured in 64 patients who were positive for the intestinal parasite G. intestinalis. Scores were obtained for the positives and their 60 age- and sex-matched G. intestinalis-negative healthy controls. The mean concentration of magnesium in blood was significantly lower in G. intestinalis-positive patients than in their controls both in females (p<0.05) and males (p<0.05). The average zinc concentration in G. intestinalis-positive female patients was 0.76±0.3 mg/L and it was 0.60±0.2 mg/L in controls (p>0.05). The mean values of the zinc in blood were 0.73±0.2 mg/L in G. intestinalis-positive male patients and 0.82±0.1 mg/L in controls (p>0.05). No correlation could be demonstrated between age and mean values of zinc and magnesium in both G. intestinalis-positive females/males and controls (p>0.05). No significant correlation could be found between blood zinc and magnesium levels in G. intestinalis-positive female/male patients and controls (p>0.05). Magnesium levels were found to be clearly decreased, whereas no change was observed in zinc level in the patients infected with G. intestinalis compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号