首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neogastropoda, a highly diversified group of predatory marine snails, has often been contradicted in molecular phylogenetic studies. This is partly the consequence of limited neogastropod taxa or outgroups analyzed or insufficient gene sequences employed. This paper reports the most extensive molecular study of the group published to date with increased neogastropod taxa, multiple representatives of caenogastropod outgroups, and additional gene sequences. Data were collected from the entire 18S rRNA, histone H3, and three partial mitochondrial genes. Maximum parsimony, maximum likelihood and Bayesian analyses were conducted. In the caenogastropod phylogenetic framework, Hypsogastropoda was contradicted owing to the inclusion of Cerithioidea. Contrary to previous molecular studies, all the results recovered Neogastropoda as a monophyletic group, which confirms the monophyly of Neogastropoda and the validity of morphological synapomorphies that usually define Neogastropoda as monophyletic. Tonnoidea was shown to be paraphyletic with respect to Ficidae, and together this group formed a monophyletic clade as the sister group to Neogastropoda, which supported the “high mesogastropod” hypothesis of the origin of Neogastropoda. All neogastropod families were strongly supported except Buccinidae, Turridae and Cancellariidae. Our results shed light on the status of Neogastropoda, a controversial group, within Caenogastropoda.  相似文献   

2.
Phylogenetic analyses of partial sequences spanning approximately 450 nucleotides near the 5'end of the 18s rDNA strongly support the monophyly of Apogastropoda and its constituent clades, Caenogastropoda and Heterobranchia. Representatives of the architaenioglossan groups Cyclophoroidea, Ampullariidae and Viviparidae invariably emerge within Caenogastropoda in all analyses. While the Cyclophoroidea and Ampullariidae are monophyletic, the varying position of Viviparidae in all outcomes contradicts its hypothesized sister group relationship with Ampullariidae, and thus the monophyly of Ampullarioidea. Because of the position of Viviparidae, Architaenioglossa does not emerge as a clade in any of our analyses. Campanile consistently emerges between Cyclophoroidea and Cerithioidea, or in a clade with Cyclophoroidea and Ampullariidae, a position not predicted by previous morphological studies. Maximum parsimony analyses of sequence data show Caenogastropoda to comprise a series of sequentially diverging higher taxa. However, maximum likelihood analyses as well as maximum parsimony analyses using only trans-versions divide Caenogastropoda into two clades, one containing the architaenioglossan taxa, Campaniloidea and Cerithioidea, the other containing the higher caenogastropod taxa included in Eucaenogastropoda (Haszprunar, 1988) [= Hypsogastropoda (Ponder & Lindberg 1997)l. Denser taxon sampling revealed insertions to be present in the 18s rDNA gene of several caenogastropod taxa. Earlier reports (Harasewych et al. 1997b) of reduced sequence divergence levels in Caenogastropoda are shown to be restricted to Hypsogastropoda. Based on a broader taxonomic sampling, divergence levels within Caenogastropoda are comparable to those found within Heterobranchia.  相似文献   

3.
The Pleuroceridae Fischer, 1885, is one of three freshwatergastropod families currently recognized in the superfamily CerithioideaFérussac, 1819 (Mollusca: Caenogastropoda Cox, 1960).Despite considerable literature justifying various proposedgeneric names of North American pleurocerids, no study has beenconducted examining phylogenetic relationships of the recognizedgenera. In an effort to expand our understanding of evolutionaryrelationships of North American pleurocerid genrea, we examineda large portion of the mitochondrial 16S rRNA gene among 32extant North American taxa. Multiple sequence alignment of theamplified region for our taxa resulted in a matrix consistingof 900 nucleotides including insertions and deletions. Basedon analysis of nucleotide substitution patterns, we employedtwo approaches in our phylogenetic analysis: (1) all substitutionsreceived equal weighting and (2) transversions were weighted2X and 4X transitions to compensate for transition saturationamong distantly related taxa. The molecular phylogeny basedon the mitochondrial 16S rDNA sequences supports the monophylyof Pleurocera Rafinesque, 1819, Elimia H. & A. Adams, 1854,and Juga H. & A. Adams, 1854, but depicts the genera LithasiaHaldeman, 1840, and Leptoxis Rafinesque, 1819, as polyphyletic.The genus Pleurocera is sister to Elimia, which in turn is sisterto a paraphyletic assemblage including representatives of Leptoxis,Lithasia, and the monotypic genus Io Lea, 1831. Juga, a genusrestricted to west of the North American continental divideis the basal-most clade and is sister to all the aforementionedgenera found east of the continental divide. (Received 26 January 1999; accepted 14 October 1999)  相似文献   

4.
Abstract Phylogenetic relationships among thirty-two species of mosquitoes in subfamily Anophelinae are inferred from portions of the mitochondrial genes COI and COII, the nuclear 18S small subunit rRNA gene and the expansion D2 region of the nuclear large subunit 28S rRNA gene. Sequences were obtained from the genera Anopheles , Bironella and Chagasia . Representatives of all six subgenera of Anopheles were included: Anopheles , Cellia , Kerteszia , Lophopodomyia , Nyssorhynchus and Stethomyia. Using parsimony and maximum likelihood methods, various combinations of these DNA sequence data were analysed separately: 18S, 28S, combined 18S and 28S, combined COI and COII, and combined 18S, 28S, COI and COII ('total evidence'). The combined rDNA data contain strong phylogenetic signal, moderately to strongly supporting most clades in MP and ML analyses; however, the mtDNA data (analysed as either nucleotide or amino acid sequences) contain little phylogenetic signal, except for relationships of very recently derived groups of species and, at the deepest level, for the monophyly of Anophelinae. The paraphyly of Anopheles relative to Bironella is confirmed by most analyses and statistical tests. Support for the monophyly of subgenera Anopheles , Cellia , Kerteszia and Nyssorhynchus is indicated by most analyses. Subgenus Lophopodomyia is reconstructed as the sister to Bironella , nested within a clade also containing Nyssorhynchus and Kerteszia . The most basal relationships within genus Anopheles are not well resolved by any of the data partitions, although the results of statistical analyses of the rDNA data (S-H-tests, likelihood ratio tests for monophyly and Bayesian MCMC analyses) suggest that the clade consisting of Bironella , Lophopodomyia , Nyssorhynchus and Kerteszia is the sister to the clade containing Cellia and Anopheles .  相似文献   

5.

Background  

The Neogastropoda is a highly diversified group of predatory marine snails (Gastropoda: Caenogastropoda). Traditionally, its monophyly has been widely accepted based on several morphological synapomorphies mostly related with the digestive system. However, recent molecular phylogenetic studies challenged the monophyly of Neogastropoda due to the inclusion of representatives of other caenogastropod lineages (e.g. Littorinimorpha) within the group. Neogastropoda has been classified into up to six superfamilies including Buccinoidea, Muricoidea, Olivoidea, Pseudolivoidea, Conoidea, and Cancellarioidea. Phylogenetic relationships among neogastropod superfamilies remain unresolved.  相似文献   

6.
Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca)   总被引:4,自引:0,他引:4  
Caenogastropoda is the dominant group of marine gastropods in terms of species numbers, diversity of habit and habitat and ecological importance. This paper reports the first comprehensive multi-gene phylogenetic study of the group. Data were collected from up to six genes comprising parts of 18S rRNA, 28S rRNA (five segments), 12S rRNA, cytochrome c oxidase subunit I, histone H3 and elongation factor 1alpha. The alignment has a combined length of 3995 base positions for 36 taxa, comprising 29 Caenogastropoda representing all of its major lineages and seven outgroups. Maximum parsimony, maximum likelihood and Bayesian analyses were conducted. The results generally support monophyly of Caenogastropoda and Hypsogastropoda (Caenogastropoda excepting Architaenioglossa, Cerithioidea and Campanilioidea). Within Hypsogastropoda, maximum likelihood and Bayesian analyses identified a near basal clade of nine or 10 families lacking an anterior inhalant siphon, and Cerithiopsidae s.l. (representing Triphoroidea), where the siphon is probably derived independently from other Hypsogastropoda. The asiphonate family Eatoniellidae was usually included in the clade but was removed in one Bayesian analysis. Of the two other studied families lacking a siphon, the limpet-shaped Calyptraeidae was associated with this group in some analyses, but the tent-shaped Xenophoridae was generally associated with the siphonate Strombidae. The other studied hypsogastropods with an anterior inhalant siphon include nine families, six of which are Neogastropoda, the only traditional caenogastropod group above the superfamily-level with strong morphological support. The hypotheses that Neogastropoda are monophyletic and that the group occupies a derived position within Hypsogastropoda are both contradicted, but weakly, by the molecular analyses. Despite the addition of large amounts of new molecular data, many caenogastropod lineages remain poorly resolved or unresolved in the present analyses, possibly due to a rapid radiation of the Hypsogastropoda following the Permian-Triassic extinction during the early Mesozoic.  相似文献   

7.
We performed a comparative study of partial rDNA sequences from a variety of Coleoptera taxa to construct an annotated alignment based on secondary structure information, which in turn, provides improved rRNA structure models useful for phylogenetic reconstruction. Subsequent phylogenetic analysis was performed to test monophyly and interfamilial relationships of the megadiverse plant feeding beetle group known as ‘Phytophaga’ (Curculionoidea and Chrysomeloidea), as well as to discover their closest relatives among the Cucujiformia. Parsimony and Bayesian analyses were performed based on the structural alignment of segments of 18S rRNA (variable regions V4‐V5, V7‐V9) and 28S rRNA (expansion segment D2). A total of 104 terminal taxa of Coleoptera were included: 96 species of Cucujiformia beetles, representing the families and most ‘subfamilies’ of weevils and chrysomeloids (Phytophaga), as well as several families of Cleroidea, Tenebrionoidea and Cucujoidea, and eight outgroups from three other polyphagan series: Scarabaeiformia, Elateriformia and Bostrichiformia. The results from the different methods of analysis agree — recovering the monophyly of the ‘Phytophaga’, including Curculionoidea and Chrysomeloidea as sister groups. The curculionoid and chrysomeloid phylogeny recovered from the aligned 18S and 28S rDNA segments, which is independent of morphological data, is in agreement with recent hypotheses or concepts based on morphological evidence, particularly with respect to familial relationships. Our results provide clues about the evolutionary origin of the phytophagan beetles within the megaclade Cucujiformia, suggesting that the sister group of ‘Curculionoidea + Chrysomeloidea’ is a clade of the ‘Cucujoidea’, represented in this study by species in Boganiidae, Erotylidae, Nitidulidae, Cucujidae and Silvanidae. The Coccinellidae and Endomychidae are not grouped with the latter, and the remaining terminal taxa are nested in Tenebrionoidea and Cleroidea. We propose that the combination of structurally aligned ribosomal RNA gene regions 18S (V4‐V5, V7‐V9) and 28S (D2) are useful in testing monophyly and resolving relationships among beetle superfamilies and families.  相似文献   

8.
Abstract. Phylogenetic relationships among species groups of Trichadenotecnum were inferred based on morphology and the partial sequences of five gene regions (mitochondrial 12S rDNA, 16S rDNA, cytochrome oxidase I, NADH dehydrogenase subunit 5 and nuclear 18S rDNA). All analyses supported the monophyly of Trichadenotecnum and all previously proposed species groups, except that T. circularoides was excluded from the spiniserrulum group. To examine the phylogenetic usefulness of morphological data, the morphological characters used in the construction of an earlier taxonomic system for Trichadenotecnum were mapped parsimoniously on the molecular tree. As a result: (1) commonly used forewing marking features (sparsely or extensively spotted) are considered to be very homoplastic and less informative of higher‐level phylogenetic relationships; (2) a broadly expanded epiproct lobe is considered to be independently evolved at least two or three times, and a detailed morphological re‐examination allows recognition of these convergent structures; (3) the short ventral valve of gonapophyses independently evolved at least three or four times, although this character was used initially to diagnose the spiniserrulum group.  相似文献   

9.
We analyzed sequence data of the 18S rDNA gene from representatives of nine mycoparasitic or zooparasitic genera to infer the phylogenetic relationships of these fungi within the Zygomycota. Phylogenetic analyses identified a novel monophyletic clade consisting of the Zoopagales, Kickxellales, Spiromyces, and Harpellales. Analyses also identified a monophyletic mycoparasitic-zooparasitic Zoopagales clade in which Syncephalis, Thamnocephalis, and Rhopalomyces form a sister group to a Piptocephalis-Kuzuhaea clade. Although monophyly of the mycoparasitic Dimargaritales received strong bootstrap and decay index support, phylogenetic relationships of this order could not be resolved because of the unusually high rate of base substitutions within the 18S rDNA gene. Overall, the 18S gene tree topology is weak, as reflected by low bootstrap and decay index support for virtually all internal nodes uniting ordinal and superordinal taxa. Nevertheless, the 18S rDNA phylogeny is mostly consistent with traditional phenotypic-based classification schemes of the Fungi.  相似文献   

10.

Background  

Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders). However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial matR gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of matR in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including matR, two plastid genes (rbcL, atpB), and one nuclear gene (18S rDNA).  相似文献   

11.
The spittlebug superfamily Cercopoidea (Hemiptera: Cicadomorpha) comprises approximately 3000 phytophagous species (including some economically important pests of grass crops) classified among the families Cercopidae, Aphrophoridae, Epipygidae, Clastopteridae and Machaerotidae. However, the monophyly of these taxa has never been tested and the evolutionary relationships among these major lineages are unknown. Presented here are the results of the first ever phylogenetic investigation of the higher‐level relationships within Cercopoidea, based on DNA nucleotide sequence data from six loci (18S rDNA, 28S rDNA, histone 3, wingless, cytochrome oxidase I and cytochrome oxidase II) generated from exemplars of 109 spittlebug species representing all five described families, seven of eight subfamilies and 61 genera (eight additional exemplars, representing a selection of other Auchenorrhyncha taxa, were included as outgroups). The resulting topologies are used to evaluate the monophyly of each cercopoid family, and further to calculate divergence date estimates to examine the chronological origins and historical diversification of Cercopoidea. The results of this investigation suggest that: (i) four of the five described families are monophyletic; Epipygidae was recovered consistently as originating within Aphrophoridae; (ii) the exclusively Old World Machaerotidae is the most anciently diversified family of extant spittlebugs; (iii) New World Cercopidae (i.e. Ischnorhininae) constitute a derived monophyletic lineage; (iv) the genus Microsargane Fowler, classified currently within Aphrophoridae, actually belongs within Cercopidae; and (v) the origins of the major spittlebug lineages probably coincided with the breakup of Pangaea and, subsequently, Gondwana, as well as major floristic diversification such as the rise of angiosperms.  相似文献   

12.
The main goals of this study were to provide a robust phylogeny for the families of the superfamily Curculionoidea, to discover relationships and major natural groups within the family Curculionidae, and to clarify the evolution of larval habits and host-plant associations in weevils to analyze their role in weevil diversification. Phylogenetic relationships among the weevils (Curculionoidea) were inferred from analysis of nucleotide sequences of 18S ribosomal DNA (rDNA; approximately 2,000 bases) and 115 morphological characters of larval and adult stages. A worldwide sample of 100 species was compiled to maximize representation of weevil morphological and ecological diversity. All families and the main subfamilies of Curculionoidea were represented. The family Curculionidae sensu lato was represented by about 80 species in 30 "subfamilies" of traditional classifications. Phylogenetic reconstruction was accomplished by parsimony analysis of separate and combined molecular and morphological data matrices and Bayesian analysis of the molecular data; tree topology support was evaluated. Results of the combined analysis of 18S rDNA and morphological data indicate that monophyly of and relationships among each of the weevil families are well supported with the topology ((Nemonychidae, Anthribidae) (Belidae (Attelabidae (Caridae (Brentidae, Curculionidae))))). Within the clade Curculionidae sensu lato, the basal positions are occupied by mostly monocot-associated taxa with the primitive type of male genitalia followed by the Curculionidae sensu stricto, which is made up of groups with the derived type of male genitalia. High support values were found for the monophyly of some distinct curculionid groups such as Dryophthorinae (several tribes represented) and Platypodinae (Tesserocerini plus Platypodini), among others. However, the subfamilial relationships in Curculionidae are unresolved or weakly supported. The phylogeny estimate based on combined 18S rDNA and morphological data suggests that diversification in weevils was accompanied by niche shifts in host-plant associations and larval habits. Pronounced conservatism is evident in larval feeding habits, particularly in the host tissue consumed. Multiple shifts to use of angiosperms in Curculionoidea were identified, each time associated with increases in weevil diversity and subsequent shifts back to gymnosperms, particularly in the Curculionidae.  相似文献   

13.
Phylogenetic relationships within the subclass Pteriomorphia (Bivalvia) were examined using sequences of the mitochondrial cytochrome c oxidase subunit I gene. The resultant Minimum Evolution phylogenetic tree strongly supports the existing superfamily-level classification with all the members of each superfamily forming clades. At the same time, it is suggested that: (1) Ostreoidea shows a closer relationship to Pinnoidea and Pterioidea than to the other superfamilies; (2) Pectinoidea, Anomioidea, and Limoidea form a clade, (3) Arcoidea and Limopsoidea form a clade; (4) The subclass Anomalodesmata is closer to the subclass Heterodonta than to Mytiloidea; and (5) The subclass Pteriomorphia is monophyletic. Taking these results as well as published data for nuclear 18S ribosomal DNA (18S rDNA) and Myosin analyses into consideration, a new order-level classification system for Pteriomorphia is proposed.  相似文献   

14.
New sequences of the partial rDNA gene coding for the mitochondrial large ribosomal subunit, 16S, are derived from 47 diverse hydrozoan species and used to investigate phylogenetic relationships among families of the group Capitata and among species of the capitate family Corynidae. Our analyses identify a well-supported clade, herein named Aplanulata, of capitate hydrozoans that are united by the synapomorphy of undergoing direct development without the ciliated planula stage that is typical of cnidarians. Aplanulata includes the important model organisms of the group Hydridae, as well as species of Candelabridae, Corymorphidae, and Tubulariidae. The hypothesis that Hydridae is closely related to brackish water species of Moerisiidae is strongly controverted by 16S rDNA data, as has been shown for nuclear 18S rDNA data. The consistent phylogenetic signal derived from 16S and 18S data suggest that both markers would be useful for broad-scale multimarker analyses of hydrozoan relationships. Corynidae is revealed as paraphyletic with respect to Polyorchidae, a group for which information about the hydroid stage is lacking. Bicorona , which has been classified both within and outside of Corynidae, is shown to have a close relationship with all but one sampled species of Coryne . The corynid genera Coryne , Dipurena , and Sarsia are not revealed as monophyletic, further calling into question the morphological criteria used to classify them. The attached gonophores of the corynid species Sarsia lovenii are confirmed as being derived from an ancestral state of liberated medusae. Our results indicate that the 16S rDNA marker could be useful for a DNA-based identification system for Cnidaria, for which it has been shown that the commonly used cytochrome c oxidase subunit 1 gene does not work.  相似文献   

15.
Phylogenetic relationships among five cockroach families (Cryptocercidae, Polyphagidae, Blattidae, Blattellidae and Blaberidae) using seventeen species, were estimated based on the DNA sequences of the mitochondrial cytochrome oxidase subunit II (COII) gene. A cladogram inferred using the neighbour‐joining method indicated that Polyphagidae and Cryptocercidae are closely related to each other, and that these two groups are a sister group to the remaining cockroach families. The monophyly of this clade, however, was not strongly supported in terms of bootstrap percentages. Blaberidae and Blattellidae were shown to be sister groups as previously proposed, with Blattidae as a sister group to that clade. Non‐weighted and weighted parsimony analyses were also performed following analyses of nucleotide substitution patterns that indicated saturation of the COII gene among these taxa had occurred. These parsimonious cladograms suggested that Polyphagidae was the basal family, and Polyphaginae, including Cryptocercus as proposed by Grandcolas 1994a ), was not monophyletic. The inferred relationships among cockroach families (Polyphagidae, Cryptocercidae + (Blattidae + (Blattellidae + Blaberidae))) is partly in agreement with some previously published analyses. Additionally, based on molecular data, Asian and American Cryptocercus are suggested to have diverged from one another before the Oligocene (~20 mya).  相似文献   

16.
Symbiotic dinoflagellates belonging to the genus Symbiodinium (Freudenthal) are found worldwide in association with shallow‐water tropical and subtropical marine invertebrates. Most phylogenetic studies of Symbiodinium have used nuclear rRNA (nrDNA) genes to infer relationships among members of the genus. In this report, we present the first phylogeny of Symbiodinium based on DNA sequences from a mitochondrial protein‐coding gene (cytochrome oxidase subunit I [cox1]). Two principal groups, one comprised of Symbiodinium clade A and the second encompassing Symbiodinium clades B/C/D/E/F, are strongly supported in the cox1 phylogeny. Relationships within Symbiodinium clades B/C/D/E/F, however, are less well resolved compared with phylogenies inferred from nrDNA and chloroplast large subunit (cp23S)‐rDNA genes. Statistical tests between alternative tree topologies verified, with an exception being the position of one controversial member of Symbiodinium clade D, that relationships inferred from cox1 are congruent with those inferred from nrDNA and cp23S‐rDNA. Taken together, the relationships between the major Symbiodinium clades are robust, and there appears to be no evidence of hybridization or differential introgression of nuclear and plastid genomes between clades.  相似文献   

17.
To investigate the phylogenetic relationships of leeches, branchiobdellidans, and acanthobdellidans, whole nuclear 18S rDNA and over 650 bp of mitochondrial cytochrome c oxidase subunit I were acquired from 101 annelids, including 36 leeches, 18 branchiobdellidans, Acanthobdella peledina, as well as 28 oligochaetes and combined with homologous data for 17 polychaete outgroup taxa. Parsimony analysis of the combined aligned dataset supported monophyly of leeches, branchiobdellidans, and acanthobdellidans in 100% of jackknife replicates. Monophyly of the oligochaete order Lumbriculida with Acanthobdellida, Branchiobdellida, and Hirudinea was supported in 84% of jackknife replicates. These results provide support for the hypotheses that leeches and branchiobdellidans are sister groups, that acanthobdellidans are sister to them, and that together with the family Lumbriculidae they all constitute a clade within Oligochaeta. Results support synonymy of the classes Clitellata and the more commonly used Oligochaeta. Leeches branchiobdellidans, and acanthobdellidans should be regarded as orders equal to their closest relatives, the order Lumbriculida.  相似文献   

18.
Zou S  Li Q  Kong L  Yu H  Zheng X 《PloS one》2011,6(10):e26619

Background

DNA barcoding has recently been proposed as a promising tool for the rapid species identification in a wide range of animal taxa. Two broad methods (distance and monophyly-based methods) have been used. One method is based on degree of DNA sequence variation within and between species while another method requires the recovery of species as discrete clades (monophyly) on a phylogenetic tree. Nevertheless, some issues complicate the use of both methods. A recently applied new technique, the character-based DNA barcode method, however, characterizes species through a unique combination of diagnostic characters.

Methodology/Principal Findings

Here we analyzed 108 COI and 102 16S rDNA sequences of 40 species of Neogastropoda from a wide phylogenetic range to assess the performance of distance, monophyly and character-based methods of DNA barcoding. The distance-based method for both COI and 16S rDNA genes performed poorly in terms of species identification. Obvious overlap between intraspecific and interspecific divergences for both genes was found. The “10× rule” threshold resulted in lumping about half of distinct species for both genes. The neighbour-joining phylogenetic tree of COI could distinguish all species studied. However, the 16S rDNA tree could not distinguish some closely related species. In contrast, the character-based barcode method for both genes successfully identified 100% of the neogastropod species included, and performed well in discriminating neogastropod genera.

Conclusions/Significance

This present study demonstrates the effectiveness of the character-based barcoding method for species identification in different taxonomic levels, especially for discriminating the closely related species. While distance and monophyly-based methods commonly use COI as the ideal gene for barcoding, the character-based approach can perform well for species identification using relatively conserved gene markers (e.g., 16S rDNA in this study). Nevertheless, distance and monophyly-based methods, especially the monophyly-based method, can still be used to flag species.  相似文献   

19.
Most species of glaucosomatids (Teleostei: Glaucosomatidae) are endemic to Australia, except Glaucosoma buergeri that is widely distributed from Australia to Japan. This study elucidated phylogenetic relationships among glaucosomatids based on the morphological characters of the saccular‐otolith sagitta, in addition to molecular evidence of mitochondrial 16S rDNA, cytochrome oxidase I (COI) and cytochrome b (cyt b) sequences, and nuclear rhodopsin sequences. The topologies of individuals' phylogenetic trees, based on 16S rDNA, COI and cyt b sequences, were statistically indistinguishable from one another, and were only slightly different from a tree based on rhodopsin sequences. These molecular tree topologies, however, differed from species relationships in morphology‐based phylogenetic hypothesis proposed in previous studies. Specimens of G. buergeri from Australia and Taiwan showed differences in the sagitta and molecular differentiation at the four genes, suggesting a possible speciation event. Both molecular and morphological evidences indicate that Glaucosoma magnificum is the plesiomorphic sister species of other glaucosomatid species. Glaucosoma hebraicum is the sister species of a clade composed of G. buergeri and Glaucosoma scapulare. Molecular and morphological evidences also support the species status of G. hebraicum.  相似文献   

20.
We have examined the molecular-phylogenetic relationships between nonmulberry and mulberry silkworm species that belong to the families Saturniidae, Bombycidae and Lasiocampidae using 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit I (coxI) gene sequences. Aligned nucleotide sequences of 16S rRNA andcoxI from 14 silk-producing species were used for construction of phylogenetic trees by maximum likelihood and maximum parsimony methods. The tree topology on the basis of 16S rRNA supports monophyly for members of Saturniidae and Bombycidae. Weighted parsimony analysis weighted towards transversions relative to transitions (ts, tv4) forcoxI resulted in more robust bootstrap support over unweighted parsimony and favours the 16S rRNA tree topology. Combined analysis reflected clear biogeographic pattern, and agrees with morphological and cytological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号