首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetraphenyltetracyanoporphyrazine complex of ytterbium has been studied as a potential photosensitizer for fluorescence diagnostics and photodynamic therapy (PDT) of cancer. It has been shown that the new compound has an intensive absorption and fluorescence in the "tissue optical window". In particular, the absorption maximum of the complex is at the wavelength of 590 nm, and the fluorescence emission maximum is at 640 nm. A strong fluorescence enhancement with a 50-fold increase in the quantum yield has been revealed in blood serum. The experiments on human cancer cells line have demonstrated that the complex penetrates the cells in vitro and is located around the nuclei. The biodistribution and pharmacokinetics of the complex in animals have been investigated in vivo by a new method of transillumination fluorescence imaging using a peculiar setup. It has been found that the period of maximum uptake of the complex in mouse cervical carcinoma is from 3 to 6 h after i.v. injection, with the half-life in the tumor being 24 h. However, the selectivity of the complex in the tumor is not high enough. The time of clearance from the body is about 48 h. The area of the strongest fluorescence in the abdominal cavity in in vivo images is anatomically recognized as the intestine. This indicates that the new compounds undergo mainly the hepatic clearance mainly. The conventional methods ex vivo (confocal microscopy and point spectroscopic measurements) have detected the largest content of the complex in the intestine, liver, skin and tumor tissue. In general, the optical characteristics of the ytterbium porphyrazine complex as well as the features of its interaction with biological objects make it promising drug candidate for the photodynamic therapy and/or fluorescence diagnostics of cancer. However, a search for other novel formulations possessing a higher tumor selectivity remains an urgent problem.  相似文献   

2.
Low density lipoproteins (LDLs) are naturally occurring nanoparticles that are biocompatible, biodegradable and non-immunogenic. Moreover, the size of LDL particle is precisely controlled (approximately 22 nm) by its apoB-100 component, setting them apart from liposomes and lipid micelles. LDL particles have long been proposed as a nanocarrier for targeted delivery of diagnostics and therapeutics to LDL receptor (LDLR)-positive cancers. Here, we report the design and synthesis of a novel naphthalocyanine (Nc)-based photodynamic therapy (PDT) agent, SiNcBOA, and describe its efficient reconstitution into LDL core (100:1 payload). Possessing a near-infrared (NIR) absorption wavelength (> 800 nm) and extremely high extinction coefficient (> 10(5) M(-1)cm(-1)), SiNcBOA holds the promise of treating deeply seated tumors. Reconstituted LDL particles (r-Nc-LDL) maintain the size and shape of native LDL as determined by transmission electron microscopy, and also retain their LDLR-mediated uptake by cancer cells as demonstrated by confocal microscopy. Its preferential uptake by tumor vs normal tissue was confirmed in vivo by noninvasive optical imaging technique, demonstrating the feasibility of using this nanoparticle for NIR imaging-guided PDT of cancer.  相似文献   

3.
A near infrared fluorescence probe, lactose substituted zinc phthalocyanine, [2,9(10),16(17),23(24)-tetrakis((1-(β-d-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxyl)phthalocyaninato] zinc(II), was synthesized via click reaction. Structural characterization and optical experiment demonstrated its excellent biocompatibility and fluorescence imaging ability. Near infrared fluorescence imaging in vivo for liver cancer, lung cancer and melanoma cancer with tumor bearing nude mice as models demonstrated that lactose substituted zinc phthalocyanine has specifically targeting ability to liver cancer while no targeting to lung cancer or melanoma, which implied its potential in liver cancer diagnosis as a near infrared optical probe.  相似文献   

4.
Bacterial magnetic particles (BMPs) are of interest as potential carriers of bioactive macromolecules, drugs, or liposomes. In this study, a high-pressure homogenizer was used to disrupt Magnetospirillum gryphiswaldense strain MSR-1 cells, and BMPs were purified. BMPs were labeled with fluorescence reagent 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocianin perchlorate (DiI) and injected into the tail vein of BALB/c nude mice. Distribution of fluorescence signals of DiI–BMPs in vivo was examined using a whole-body fluorescence imaging system. The result showed that fluorescence signals were detected in liver, stomach, intestine, lungs, and spleen. However, transmission electron microscopy of ultrathin sections indicated that BMPs were mainly present in liver and lungs, but not in the other organs. BMPs could be useful as carriers for targeted drug therapy of diseases of the liver or lung.  相似文献   

5.
6.
We report the observation of two types of changes in fluorescence spectra of LHCII at 4.2 K following intense illumination of the sample with a spectrally narrow laser beam at wavelengths between 678 and 686 nm. Nonspecific changes (burning-wavelength independent) are characterized by two relatively broad bands: a positive one at ∼ 678.7 nm and a negative one at ∼ 680.8 nm. These changes reveal a ∼1.3-nm blue shift of the distribution of final emitters in LHCII, from 680.3 nm to ∼ 679.0 nm independent of the excitation wavelength. Specific fluorescence changes (burning-wavelength dependent) are characterized by a sharp hole exactly at the burning wavelength, and positive changes directly to the shorter-and longer-wavelength side of the narrow hole. The negative changes are interpreted as zero-phonon holes, while the positive features are assigned to non-photochemical products. In the low-burning intensity experiment, in addition to the zero-phonon holes, we observed also the holes to the longer wavelength of the zero-phonon hole, which were assigned to a sum of phonon and pseudo-phonon side bands. The shapes of these extra holes are identical to the shapes of the holes revealed in the fluorescence line narrowing experiment. On the basis of the low-burning intensity experiment we estimated the upper limit of the electron-phonon coupling strength for LHCII, characterized by a Huang-Rhys factor of 1.5.  相似文献   

7.
Coherent processes in an initial phase of charge transfer in reaction centers (RCs) of the triple mutant S(L178)K/G(M203)D/L(M214)H of Rhodobacter sphaeroides were investigated by difference (light — dark) absorption spectroscopy with 18 fsec time resolution. Electron transfer in the B cofactor branch is activated in this mutant, while the A-branch electron transfer is slowed in comparison with native RCs of Rba. sphaeroides. A bulk of absorption difference spectra was analyzed in the 940–1060 nm range (stimulated emission of excited bacteriochlorophyll dimer P* and absorption of bacteriochlorophyll anions BA and β, where β is a bacteriochlorophyll substituting the native bacteriopheophytin HA) and in the 735–775 nm range (bleaching of the absorption band of the bacteriopheophytin HB in the B-branch) in the −0.1 to 4 psec range of delays with respect to the moment of photoexcitation of P at 870 nm. Spectra were measured at 293 and 90 K. The kinetics of P* stimulated emission at 940 nm shows its decay with a time constant of ∼14 psec at 90 K and ∼18 psec at 293 K, which is accompanied by oscillations with a frequency of ∼150 cm−1. A weak absorption band is found at 1018 nm that is formed ∼100 fsec after excitation of P and reflects the electron transfer from P* to β and/or BA with accumulation of the P+β and/or P+BA states. The kinetics of ΔA at 1018 nm contains the oscillations at ∼150 cm−1 and distinct low-frequency oscillations at 20–100 cm−1; also, the amplitude of the oscillations at 150 cm−1 is much smaller at 293 than at 90 K. The oscillations in the kinetics of the 1018 nm band do not contain a 32 cm−1 mode that is characteristic for native Rba. sphaeroides RCs having water molecule HOH55 in their structure. The ΔA kinetics at 751 nm reflects the electron transfer to HB with formation of the P+HB state. The oscillatory part of this kinetics has the form of a single peak with a maximum at ∼50 fsec completely decaying at ∼200 fsec, which might reflect a reversible electron transfer to the B-branch. The results are analyzed in terms of coherent nuclear wave packet motion induced in the P* excited state by femtosecond light pulses, of an influence of the incorporated mutations on the mutual position of the energy levels of charge separated states, and of the role of water HOH55 in the dynamics of the initial electron transfer.  相似文献   

8.
Photodynamic therapy (PDT) is a minimally invasive and promising new modality to combat cancer. The method is based on selective accumulation of sensitizers in tumor cells. The high degree of selectivity offered by this modality has been applied for fluorescent diagnostics of cancer. Photosensitization of a tissue-localized sensitizer in the presence of oxygen generates cytotoxic reactive oxygen species results in the selective destruction of tumor. The PDT’s major advantages compared to traditional methods of cancer treatment are better selectivity, and low toxicity of administered drugs. This review highlights basic principles of this method, mechanisms underlying damage of tumor tissue and first and second generations of sensitizers. Future developments in PDT will include the development of new methods of treatment and diagnostics of tumor diseases.  相似文献   

9.
Summary Femtosecond transient absorption spectroscopy was applied for a comparative study of excitation decay in several different Photosystem I (PSI) core preparations from the green alga Chlamydomonas reinhardtii. For PSI cores with a fully interconnected network of chlorophylls, the excitation energy was equilibrated over a pool of chlorophylls absorbing at ∼683 nm, independent of excitation wavelength [Gibasiewicz et al. J Phys Chem B 105:11498–11506, 2001; J Phys Chem B 106:6322–6330, 2002]. In preparations with impaired connectivity between chlorophylls, we have found that the spectrum of chlorophylls connected to the reaction center (i.e., with ∼20 ps decay time) over which the excitation is equilibrated becomes excitation-wavelength-dependent. Excitation at 670 nm is finally equilibrated over chlorophylls absorbing at ∼675 nm, whereas excitation at 695 nm or 700 nm is equilibrated over chlorophylls absorbing at ∼683 nm. This indicates that in the vicinity of the reaction center there are two spectrally different and spatially separated pools of chlorophylls that are equally capable of effective excitation energy transfer to the reaction center. We propose that they are related to the two groups of central PSI core chlorophylls lying on the opposite sides of reaction center.  相似文献   

10.
In the present study, spectroscopic determinations of copper ions using chimeric metal-binding green fluorescent protein (His6GFP) as an active indicator have been explored. Supplementation of copper ions to the GFP solution led to a remarkable decrease of fluorescent intensity corresponding to metal concentrations. For circumstances, rapid declining of fluorescence up to 60% was detected in the presence of 500 μM copper. This is in contrast to those observed in the case of zinc and calcium ions, in which approximately 10–20% of fluorescence was affected. Recovery of its original fluorescence up to 80% was mediated by the addition of ethylenediamine tetraacetic acid. More importantly, in the presence of metal ions, the emission wavelength maximum remains unchanged while reduction of the optical density of the absorption spectrum has been observed. This indicates that the chromophore’s ground state was possibly affected by the static quenching process. Results from circular dichroism measurements revealed that the overall patterns of circular dichroism spectra after exposure to copper ions were not significantly different from that of the control, where the majority of sharp positive band around 195–196 nm in combination with a broad negative deflection around 215–216 nm was obtained. Taken together, it can be presumed that copper ions exerted their static quenching on the fluorescence rather than structural or conformational alteration. However, notification has to be made that some peptide rearrangements may also occur in the presence of metal ions. Further studies were conducted to investigate the feasibility of using the His6GFP as a sensing unit for copper ions. The His6GFP was encapsulated in Sol-gel and immobilized onto the optical fiber connected with a fluorescence detecting device. The Sol-gel was doped into the metal solution where the quenching of fluorescence could be monitored in real time. The sensing unit provided a high sensitivity of detection in the range of 0.5 μM to 50 mM with high selectivity for copper ions. All these findings open up a high potential to apply the fluorescent protein-based bioanalytical tool for copper determination in the future.  相似文献   

11.
Polysiphonia urceolata R-phycoerythrin andPorphyridium cruentum B-phycoerythrin were degraded with proteinaseK, and then the nearly native γ subunits were isolated from the reaction mixture. The process of degradation of phycocrythrin with proteinaseK showed that the γ subunit is located in the central cavity of (αβ)6 hexamer of phycoerythrin. Comparative analysis of the spectra of the native phycoerythrin, the phycoerythrin at pH 12 and the isolated γ subunit showed that the absorption peaks of phycoerythrobilins on α or β subunit are at 535 nm (or 545 nm) and 565 nm, the fluorescence emission maximum at 580 nm; the absorption peak of phycoerythrobilins on the isolated γ subunit is at 589 nm, the fluorescence emission peak at 620 nm which overlaps the absorption maximum of C-phycocyanin and perhaps contributes to the energy transfer with high efficiency between phycoerythrin and phycocyanin in phycobilisome; the absorption maximum of phycourobilin on the isolated γ subunit is at 498 nm, which is the same as that in native phycoerythrin, and the fluorescence emission maximum at 575 nm.  相似文献   

12.
Membrane potential measurements using voltage-sensitive dyes (VSDs) have made important contributions to our understanding of electrophysiological properties of multi-cellular systems. Here, we report the development of long wavelength VSDs designed to record cardiac action potentials (APs) from deeper layers in the heart. The emission spectrum of styryl VSDs was red-shifted by incorporating a thienyl group in the polymethine bridge to lengthen and retain the rigidity of the chromophore. Seven dyes, Pittsburgh I to IV and VI to VIII (PGH I-VIII) were synthesized and characterized with respect to their spectral properties in organic solvents and heart muscles. PGH VSDs exhibited 2 absorption, 2 excitation and 2 voltage-sensitive emission peaks, with large Stokes shifts (> 100 nm). Hearts (rabbit, guinea pig and Rana pipiens) and neurohypophyses (CD-1 mice) were effectively stained by injecting a bolus (10–50 μl) of stock solution of VSD (2–5 mM) dissolved in in dimethylsulfoxide plus low molecular weight Pluronic (16% of L64). Other preparations were better stained with a bolus of VSD (2–5 mM) Tyrode’s solution at pH 6.0. Action spectra measured with a fast CCD camera showed that PGH I exhibited an increase in fractional fluorescence, ΔF/F = 17.5 % per AP at 720 nm with 550 nm excitation and ΔF/F = − 6% per AP at 830 nm with 670 nm excitation. In frog hearts, PGH1 was stable with ∼30% decrease in fluorescence and AP amplitude during 3 h of intermittent excitation or 1 h of continuous high intensity excitation (300 W Xe-Hg Arc lamp), which was attributed to a combination of dye wash out > photobleaching > dynamic damage > run down of the preparation. The long wavelengths, large Stokes shifts, high ΔF/F and low baseline fluorescence make PGH dyes a valuable tool in optical mapping and for simultaneous mapping of APs and intracellular Ca2+.  相似文献   

13.
Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan–vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400–800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan–vitamin C lipid system have achieved tumor-selective imaging in vivo.  相似文献   

14.
The facile synthesis and photophysical properties of three nonhydrolyzable thioglycosylated porphyrinoids are reported. Starting from meso-perfluorophenylporphyrin, the nonhydrolyzable thioglycosylated porphyrin (PGlc?), chlorin (CGlc?), isobacteriochlorin (IGlc?), and bacteriochlorin (BGlc?) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents. Compared to the porphyrin in phosphate buffered saline, CGlc? has a markedly greater absorbance of red light near 650 nm and a 6-fold increase in fluorescence quantum yield, whereas IGlc? has broad Q-bands and a 12-fold increase in fluorescence quantum yield. BGlc? has a similar fluorescence quantum yield to PGlc? (<10%), but the lowest-energy absorption/emission peaks of BGlc? are considerably red-shifted to near 730 nm with a nearly 50-fold greater absorbance, which may allow this conjugate to be an effective PDT agent. The uptake of CGlc?, IGlc?, and BGlc? derivatives into cells such as human breast cancer cells MDA-MB-231 and K:Molv NIH 3T3 mouse fibroblast cells can be observed at nanomolar concentrations. Photobleaching under these conditions is minimal.  相似文献   

15.
目的:验证双标记生物发光成像活体观测MSCs在肝癌裸鼠模型向肿瘤病灶的趋化作用的可行性。方法:应用fluorescence(荧光)与bioluminescence(生物发光)两种成像方法,对MSCs进行CM-Di I荧光标记及对人肝癌细胞Hep G2进行Fluc-慢病毒感染并由此建立裸鼠肝癌模型,构建双标记成像系统,应用精诺真小动物光学成像仪在裸鼠肝癌模型中观测间充质干细胞向肿瘤的趋化作用。结果:在鼠尾静脉注射标记MSCs细胞后21天荧光成像可见MSCs主要积聚于肿瘤病灶处及肝脏。生物发光成像后可监测到病灶处由luciferase标记肿瘤细胞(Hep G2)发出荧光;将荧光成像与生物发光成像所得图像经后处理融合后,可见证间充质干细胞像肿瘤病灶定向迁徙的生物过程。经肿瘤病理切片证实间充质干细胞成功迁徙至肿瘤病灶中。结论:应用间充质干细胞双标记光学成像系统实现MSCs在活体内对肿瘤的趋化过程进行观测是可行的。这种成像方法可作为下一步以MSCs为载体的肿瘤基因治疗的有效监测手段。  相似文献   

16.
C_(60)对小鼠S_(180)肉瘤光动力学作用模型的建立   总被引:3,自引:0,他引:3  
为验证C60对活体肿瘤的光动力学损伤作用,我们从两方面进行实验:C60对荷瘤小鼠的S180实体瘤的光动力学杀伤作用和C80对离体S180肿瘤细胞的光动力学杀伤作用,在小鼠的瘤体上注射C80光敏剂,在511nm、578nm混合黄录色激光照射正派主发C60,产生大量的单线态氧,杀伤活性肿瘤。激光光强为500mW,C60浓度为30μg/ml时,荷瘤小鼠寿命平均延长5天,瘤径减小1cm,瘤重减轻0.8克,  相似文献   

17.
In vivo oxygen imaging using green fluorescent protein   总被引:1,自引:0,他引:1  
In vivo oxygen measurement is the key to understanding how biological systems dynamically adapt to reductions in oxygen supply. High spatial resolution oxygen imaging is of particular importance because recent studies address the significance of within-tissue and within-cell heterogeneities in oxygen concentration in health and disease. Here, we report a new technique for in vivo molecular imaging of oxygen in organs using green fluorescent protein (GFP). GFP-expressing COS-7 cells were briefly photoactivated with a strong blue light while lowering the oxygen concentration from 10% to <0.001%. Red fluorescence (excitation 520–550 nm, emission >580 nm) appeared after photoactivation at <2% oxygen (the red shift of GFP fluorescence). The red shift disappeared after reoxygenation of the cell, indicating that the red shift is stable as long as the cell is hypoxic. The red shift of GFP fluorescence was also demonstrated in single cardiomyocytes isolated from the GFP knock-in mouse (green mouse) heart. Then, we tried in vivo molecular imaging of hypoxia in organs. The red shift could be imaged in the ischemic liver and kidney in the green mouse using macroscopic optics provided that oxygen diffusion from the atmospheric air was prevented. In crystalloid-perfused beating heart isolated from the green mouse, significant spatial heterogeneities in the red shift were demonstrated in the epicardium distal to the coronary artery ligation. We conclude that the present technique using GFP as an oxygen indicator may allow in vivo molecular imaging of oxygen in organs. heart; ischemia; hypoxia; molecular imaging  相似文献   

18.
The cytotoxic and protective effects of selected synthetic chalcone analogues have been shown in previous studies. We studied their cytotoxic effect on the modification of mitochondrial membrane potential and on DNA. The first spectral information about the methoxy group as well as the dimethylamino substituent in E-2-arylmethylene-1-benzosuberones molecule was obtained by absorption and emission spectra. The cytotoxic effect of both cyclic chalcone analogues on DNA were detected by alkaline single-cell gel electrophoresis. Better fluorescent chalcone analogue E-2-(4′-dimethylamino-benzylidene)-1-benzosuberone was studied further in fresh isolated mitochondria. The decrease of rat liver mitochondria membrane potential (Δψ) was observed by fluorescence emission spectra. For the collapsing of mitochondrial potentials and as the negative control of mitochondrial function the CCCP uncoupler was used. The absorption maximum of the methoxy group was found at a shorter wavelength (λ = 335 nm) than that of the dimethylamino group (λ = 406 nm). The excitation spectra were very similar to the absorption spectra for both molecules but the emission spectra showed a better fluorescence for dimethylamino derivative. After the addition of E-2-(4′-dimethylamino-benzylidene)-1-benzosuberone to the intact mitochondria the decrease of mitochondrial membrane potential Δψ was observed by emisssion fluorescence spectra. Both cyclic chalcone analogues induced DNA damage, which was detected by alkaline comet assay. Mainly the apoptotic cells were detected, but necrotic cells were also present. Similarities in the percentages of DNA migration from the head were observed in both treatment groups. Both benzosuberones, with dimethylamino- and methoxy- substituent, were very active biologically, as shown by DNA results of the comet assay. Due to its better fluorescence properties, only the fluorophore with dimethylamino substituent was selected for further study of the function of rat liver mitochondria. Decline of mitochondrial function as well as mitochondrial DNA damage were evident between experimental and control groups.  相似文献   

19.
Eleven individual hyperimmune rabbit polyclonal anti-fluorescein Fab fragment preparations were resolved into heterogeneous subfractions based on differential dissociation times from a specific adsorbent. Four Fab subfractions (i.e., 0.1-, 1.0-, 10-, and 100-day elutions) that differed in affinity were characterized and classified according to the extent of the bathochromic shift in the absorption properties of antibody-bound fluorescein ligand. Absorption maxima of bound fluorescein were shifted in all cases to two distinct narrow ranges, namely, 505 to 507 nm or 518 to 520 nm relative to 491 nm for free fluorescein. There was no direct correlation between the two spectral shift populations and antibody affinity, fluorescence polarization, fluorescence quenching, or fluorescence lifetimes of bound ligand. Fluorescence emission maxima varied with the bathochromic shift range. Bound fluorescein ligand, with absorption maxima of 505 to 507 nm and 518 to 520 nm showed fluorescence emission maxima of 519 to 520 nm and 535 nm, respectively. The two spectral shift ranges differed by 14 to 15 nm and/or energies of 1.5 kcal mol–1 relative to each other and to the absorption maximum for free fluorescein. Spectral effects on the antibody-bound ligand were discussed relative to solvent-water studies and the atomic structure of a high-affinity liganded anti-fluorescein active site.  相似文献   

20.
A number of dermal toxicological studies using TiO2 nanoparticles exist which are based on the study of various animal models like mice, rabbits etc. However, a well-defined study is lacking on the dermal toxic effects of TiO2 nanoparticles on rats, which are the appropriate model for systemic absorption study of nanoparticles. Furthermore, toxicity of TiO2 nanoparticles varies widely depending upon the size, concentration, crystallinity, synthesis method etc. This study was conducted to synthesize TiO2 nanoparticles of different sizes (∼15 to ∼30 nm) by aqueous method, thereby evaluating the concentration-dependent toxicological effects of the ∼20-nm sized nanoparticles on Wistar rats. Characterization of the particles was done by transmission electron microscope, dynamic light scattering instrument, X-ray diffractrometer, and ultraviolet spectrophotometer. The toxicity study was conducted for 14 days (acute), and it is observed that TiO2 nanoparticles (∼20 nm) at a concentration of 42 mg/kg, when applied topically showed toxicity on rat skin at the biochemical level. However, the histopathological studies did not show any observable effects at tissue level. Our data suggest that well-crystallized spherical-shaped ∼20 nm anatase TiO2 nanoparticles synthesized in aqueous medium can induce concentration-dependent biochemical alteration in rat skin during short-term exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号