首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circulating levels of inflammatory markers can predict cardiovascular disease risk. To identify genes influencing the levels of these markers, we genotyped 1,343 single-nucleotide polymorphisms (SNPs) in 1,184 African Americans from the Health, Aging and Body Composition (Health ABC) Study. Using admixture mapping, we found a significant association of interleukin 6 soluble receptor (IL-6 SR) with European ancestry on chromosome 1 (LOD 4.59), in a region that includes the gene for this receptor (IL-6R). Genotyping 19 SNPs showed that the effect is largely explained by an allele at 4% frequency in West Africans and at 35% frequency in European Americans, first described as associated with IL-6 SR in a Japanese cohort. We replicate this association (P<1.0x10-12) and also demonstrate a new association with circulating levels of a different molecule, IL-6 (P<3.4x10-5). After replication in 1,674 European Americans from Health ABC, the combined result is even more significant: P<1.0x10-12 for IL-6 SR, and P<2.0x10-9 for IL-6. These results also serve as an important proof of principle, showing that admixture mapping can not only coarsely localize but can also fine map a phenotypically important variant.  相似文献   

2.
Markers informative for ancestry are necessary for admixture mapping and improving case-control association analyses. In particular, African Americans are an admixed population for which genetic studies require accurately evaluating admixture. This will require markers that can be used in African Americans to determine if a given genomic region is of European or African ancestry. This report shows that, despite studies indicating high intra-African sequence variation, markers with large inter-ethnic differences have only small variations in allele distribution among divergent African populations and should be valuable for evaluating admixture in complex disease genetic studies.  相似文献   

3.
African-American populations are genetically admixed. Studies performed among unrelated individuals from ethnically admixed populations may be both vulnerable to confounding by population stratification, but offer an opportunity for efficiently mapping complex traits through admixture linkage disequilibrium. By typing 42 ancestry-informative markers and estimating genetic ancestry, we assessed genetic admixture and heterogeneity among African-American participants in the Coronary Artery Risk Development in Young Adults (CARDIA) cohort. We also assessed associations between individual genetic ancestry and several quantitative and binary traits related to cardiovascular risk. We found evidence of population sub-structure and excess inter-marker linkage disequilibrium, consistent with recent admixture. The estimated group admixture proportions were 78.1% African and 22.9% European, but differed according to geographic region. In multiple regression models, African ancestry was significantly associated with decreased total cholesterol, decreased LDL-cholesterol, and decreased triglycerides, and also with increased risk of insulin resistance. These observed associations between African ancestry and several lipid traits are consistent with the general tendency of individuals of African descent to have healthier lipid profiles compared to European-Americans. There was no association between genetic ancestry and hypertension, BMI, waist circumference, CRP level, or coronary artery calcification. These results demonstrate the potential for confounding of genetic associations with some cardiovascular disease-related traits in large studies involving US African-Americans.  相似文献   

4.
Markers with large differences in allele frequencies between ethnicities provide ancestry information that can be applied to genetic studies. We identified over 100 biallelic ancestry informative markers (AIMs) with large allele frequency differences between European Americans (EA) and Pima Amerindians from laboratory and database screens. For 35 of these markers, Mayan, Yavapai and Quechuan Amerindians were genotyped and compared with EA and Pima allele frequencies. Markers with large allele frequency differences between EA and one Amerindian tribe showed only small differences between the Amerindian tribes. Examination of structure in individuals demonstrated a clear separation of subjects of European from those of Amerindian ancestry, and similarity between individuals from disparate Amerindian populations. The AIMs demonstrated the variation in ancestral composition of individual Mexican Americans, providing evidence of applicability in admixture mapping and in controlling for structure in association tests. In addition, a high percentage of single-nucleotide polymorphisms (SNPs) selected on the basis of large frequency differences between EA and Asian populations had large allele frequency differences between EA and Amerindians, suggesting an efficient method for greatly expanding AIMs for use in admixture mapping/structure analysis in Mexican Americans. Together, these data provide additional support for the practical application of admixture mapping in the Mexican American population.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

5.
Self-reported race/ethnicity is frequently used in epidemiological studies to assess an individual’s background origin. However, in admixed populations such as Hispanic, self-reported race/ethnicity may not accurately represent them genetically because they are admixed with European, African and Native American ancestry. We estimated the proportions of genetic admixture in an ethnically diverse population of 396 mothers and 188 of their children with 35 ancestry informative markers (AIMs) using the STRUCTURE version 2.2 program. The majority of the markers showed significant deviation from Hardy-Weinberg equilibrium in our study population. In mothers self-identified as Black and White, the imputed ancestry proportions were 77.6% African and 75.1% European respectively, while the racial composition among self-identified Hispanics was 29.2% European, 26.0% African, and 44.8% Native American. We also investigated the utility of AIMs by showing the improved fitness of models in paraoxanase-1 genotype-phenotype associations after incorporating AIMs; however, the improvement was moderate at best. In summary, a minimal set of 35 AIMs is sufficient to detect population stratification and estimate the proportion of individual genetic admixture; however, the utility of these markers remains questionable.  相似文献   

6.
European Americans are often treated as a homogeneous group, but in fact form a structured population due to historical immigration of diverse source populations. Discerning the ancestry of European Americans genotyped in association studies is important in order to prevent false-positive or false-negative associations due to population stratification and to identify genetic variants whose contribution to disease risk differs across European ancestries. Here, we investigate empirical patterns of population structure in European Americans, analyzing 4,198 samples from four genome-wide association studies to show that components roughly corresponding to northwest European, southeast European, and Ashkenazi Jewish ancestry are the main sources of European American population structure. Building on this insight, we constructed a panel of 300 validated markers that are highly informative for distinguishing these ancestries. We demonstrate that this panel of markers can be used to correct for stratification in association studies that do not generate dense genotype data.  相似文献   

7.
Admixture occurs when individuals from parental populations that have been isolated for hundreds of generations form a new hybrid population. Currently, interest in measuring biogeographic ancestry has spread from anthropology to forensic sciences, direct-to-consumers personal genomics, and civil rights issues of minorities, and it is critical for genetic epidemiology studies of admixed populations. Markers with highly differentiated frequencies among human populations are informative of ancestry and are called ancestry informative markers (AIMs). For tri-hybrid Latin American populations, ancestry information is required for Africans, Europeans and Native Americans. We developed two multiplex panels of AIMs (for 14 SNPs) to be genotyped by two mini-sequencing reactions, suitable for investigators of medium-small laboratories to estimate admixture of Latin American populations. We tested the performance of these AIMs by comparing results obtained with our 14 AIMs with those obtained using 108 AIMs genotyped in the same individuals, for which DNA samples is available for other investigators. We emphasize that this type of comparison should be made when new admixture/population structure panels are developed. At the population level, our 14 AIMs were useful to estimate European admixture, though they overestimated African admixture and underestimated Native American admixture. Combined with more AIMs, our panel could be used to infer individual admixture. We used our panel to infer the pattern of admixture in two urban populations (Montes Claros and Manhua?u) of the State of Minas Gerais (southeastern Brazil), obtaining a snapshot of their genetic structure in the context of their demographic history.  相似文献   

8.
The relationship between ethnicity and biology is of interest to anthropologists, biomedical scientists, and historians in understanding how human groups are constructed. Ethnic self-identification in recently admixed groups such as Hispanics, African Americans, and Native Americans (NA) is likely to be complex due to the heterogeneity in individual admixture proportions and social environments within these groups. This study examines the relationships between self-identified ethnicity, self-estimated admixture proportions, skin pigmentation, and genetic marker estimated admixture proportions. These measures were assessed using questionnaires, skin color measurements, and genotyping of a panel of 76 ancestry informative markers, among 170 Hispanics and NAs from New Mexico, a state known for its complex history of interactions between people of NA and European (EU) ancestry. Results reveal that NAs underestimate their degree of EU admixture, and that Hispanics underestimate their degree of NA admixture. Within Hispanics, genetic-marker estimated admixture is better predicted by forehead skin pigmentation than by self-estimated admixture. We also find that Hispanic individuals self-identified as "half-White, half Hispanic" and "Spanish" have lower levels of NA admixture than those self-identified as "Mexican" and "Mexican American." Such results highlight the interplay between culture and biology in how individuals identify and view themselves, and have implications for how ethnicity and disease risk are assessed in a medical setting.  相似文献   

9.
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genome-wide empirical and simulated data, that the approach based on the distribution of chromosomal segments of distinct ancestry (CSDAs) was more powerful than that based on the distribution of individual ancestry proportions. Analysis of 1,890 African Americans showed that a continuous gene flow model, in which the African American population continuously received gene flow from European populations over about 14 generations, best explained the admixture dynamics of African Americans among several putative models. Interestingly, we observed that some African Americans had much more European ancestry than the simulated samples, indicating substructures of local ancestries in African Americans that could have been caused by individuals from some particular lineages having repeatedly admixed with people of European ancestry. In contrast, the admixture dynamics of Mexicans could be explained by a gradual admixture model in which the Mexican population continuously received gene flow from both European and Amerindian populations over about 24 generations. Our results also indicated that recent gene flows from Sub-Saharan Africans have contributed to the gene pool of Middle Eastern populations such as Mozabite, Bedouin, and Palestinian. In summary, this study not only provides approaches to explore population admixture dynamics, but also advances our understanding on population history of African Americans, Mexicans, and Middle Eastern populations.  相似文献   

10.
White blood cell count (WBC) is an important clinical marker that varies among different ethnic groups. African Americans are known to have a lower WBC than European Americans. We surveyed the entire genome for loci underlying this difference in WBC by using admixture mapping. We analyzed data from African American participants in the Health, Aging, and Body Composition Study and the Jackson Heart Study. Participants of both studies were genotyped across ≥ 1322 single nucleotide polymorphisms that were pre-selected to be informative for African versus European ancestry and span the entire genome. We used these markers to estimate genetic ancestry in each chromosomal region and then tested the association between WBC and genetic ancestry at each locus. We found a locus on chromosome 1q strongly associated with WBC (p < 10−12). The strongest association was with a marker known to affect the expression of the Duffy blood group antigen. Participants who had both copies of the common West African allele had a mean WBC of 4.9 (SD 1.3); participants who had both common European alleles had a mean WBC of 7.1 (SD 1.3). This variant explained ~20% of population variation in WBC. We used admixture mapping, a novel method for conducting genetic-association studies, to find a region that was significantly associated with WBC on chromosome 1q. Additional studies are needed to determine the biological mechanism for this effect and its clinical implications.  相似文献   

11.
Skin pigmentation,biogeographical ancestry and admixture mapping   总被引:23,自引:0,他引:23  
Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R(2)=0.21, P<0.0001 for the African-American sample and R(2)=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and applications of ancestry estimates in biomedical research are discussed.  相似文献   

12.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

13.
Aerobic fitness and adiposity are each independently associated with health outcomes among children, although the relationship between these two variables is unclear. Our objectives were to evaluate (i) the association of adiposity with aerobic fitness using objectively measured levels of percent body fat, compared to BMI as a percentile proxy for adiposity while controlling for genetic admixture, and (ii) the congruence of BMI categories with high and low body fat categories of objectively measured percent body fat. Participants were 232 African-American (AA), European-American (EA), and Hispanic-American (HA) children aged 7-12 years (Tanner stage <3). Aerobic fitness was measured via a submaximal indirect calorimetry treadmill test (VO(2-170)), and physical activity levels with accelerometry. Genetic admixture estimates were obtained using 140 genetic ancestry informative markers to estimate European, African, and Amerindian admixture. Fat mass was determined using dual-energy x-ray absorptiometry (DXA). Children were classified into a low body fat group (<25% in males, <30% in females) or a high body fat group based on their percent body fat; children were also categorized according to BMI percentile. Children in the low body fat group had significantly higher aerobic fitness (P < 0.05) regardless of BMI percentile classification. Higher African genetic admixture was associated with lower aerobic fitness (P < 0.05), while physical activity was positively associated with fitness (P < 0.01). In conclusion, aerobic fitness levels differ by percent body fat and genetic admixture irrespective of BMI classification, and such differences should be taken into account when evaluating outcomes of health interventions.  相似文献   

14.
We analyzed the European genetic contribution to 10 populations of African descent in the United States (Maywood, Illinois; Detroit; New York; Philadelphia; Pittsburgh; Baltimore; Charleston, South Carolina; New Orleans; and Houston) and in Jamaica, using nine autosomal DNA markers. These markers either are population-specific or show frequency differences >45% between the parental populations and are thus especially informative for admixture. European genetic ancestry ranged from 6.8% (Jamaica) to 22.5% (New Orleans). The unique utility of these markers is reflected in the low variance associated with these admixture estimates (SEM 1.3%-2.7%). We also estimated the male and female European contribution to African Americans, on the basis of informative mtDNA (haplogroups H and L) and Y Alu polymorphic markers. Results indicate a sex-biased gene flow from Europeans, the male contribution being substantially greater than the female contribution. mtDNA haplogroups analysis shows no evidence of a significant maternal Amerindian contribution to any of the 10 populations. We detected significant nonrandom association between two markers located 22 cM apart (FY-null and AT3), most likely due to admixture linkage disequilibrium created in the interbreeding of the two parental populations. The strength of this association and the substantial genetic distance between FY and AT3 emphasize the importance of admixed populations as a useful resource for mapping traits with different prevalence in two parental populations.  相似文献   

15.

Background

The ancestry of African-descended Americans is known to be drawn from three distinct populations: African, European, and Native American. While many studies consider this continental admixture, few account for the genetically distinct sources of ancestry within Africa – the continent with the highest genetic variation. Here, we dissect the within-Africa genetic ancestry of various populations of the Americas self-identified as having primarily African ancestry using uniparentally inherited mitochondrial DNA.

Methods and Principal Findings

We first confirmed that our results obtained using uniparentally-derived group admixture estimates are correlated with the average autosomal-derived individual admixture estimates (hence are relevant to genomic ancestry) by assessing continental admixture using both types of markers (mtDNA and Y-chromosome vs. ancestry informative markers). We then focused on the within-Africa maternal ancestry, mining our comprehensive database of published mtDNA variation (∼5800 individuals from 143 African populations) that helped us thoroughly dissect the African mtDNA pool. Using this well-defined African mtDNA variation, we quantified the relative contributions of maternal genetic ancestry from multiple W/WC/SW/SE (West to South East) African populations to the different pools of today''s African-descended Americans of North and South America and the Caribbean.

Conclusions

Our analysis revealed that both continental admixture and within-Africa admixture may be critical to achieving an adequate understanding of the ancestry of African-descended Americans. While continental ancestry reflects gender-specific admixture processes influenced by different socio-historical practices in the Americas, the within-Africa maternal ancestry reflects the diverse colonial histories of the slave trade. We have confirmed that there is a genetic thread connecting Africa and the Americas, where each colonial system supplied their colonies in the Americas with slaves from African colonies they controlled or that were available for them at the time. This historical connection is reflected in different relative contributions from populations of W/WC/SW/SE Africa to geographically distinct Africa-derived populations of the Americas, adding to the complexity of genomic ancestry in groups ostensibly united by the same demographic label.  相似文献   

16.
Genetic structure in the European American population reflects waves of migration and recent gene flow among different populations. This complex structure can introduce bias in genetic association studies. Using Principal Components Analysis (PCA), we analyze the structure of two independent European American datasets (1,521 individuals-307,315 autosomal SNPs). Individual variation lies across a continuum with some individuals showing high degrees of admixture with non-European populations, as demonstrated through joint analysis with HapMap data. The CEPH Europeans only represent a small fraction of the variation encountered in the larger European American datasets we studied. We interpret the first eigenvector of this data as correlated with ancestry, and we apply an algorithm that we have previously described to select PCA-informative markers (PCAIMs) that can reproduce this structure. Importantly, we develop a novel method that can remove redundancy from the selected SNP panels and show that we can effectively remove correlated markers, thus increasing genotyping savings. Only 150-200 PCAIMs suffice to accurately predict fine structure in European American datasets, as identified by PCA. Simulating association studies, we couple our method with a PCA-based stratification correction tool and demonstrate that a small number of PCAIMs can efficiently remove false correlations with almost no loss in power. The structure informative SNPs that we propose are an important resource for genetic association studies of European Americans. Furthermore, our redundancy removal algorithm can be applied on sets of ancestry informative markers selected with any method in order to select the most uncorrelated SNPs, and significantly decreases genotyping costs.  相似文献   

17.
In populations that have a high degree of admixture, such as in Brazil, the sole use of ethnicity self-declaration information is not a good method for classifying individuals regarding their ethnicity. Here, we evaluate the relationship of self-declared ethnicities with genomic ancestry and mitochondrial haplogroups in 492 individuals from southeastern Brazil. Mitochondrial haplogroups were obtained by analyzing the hypervariable regions of the mitochondrial DNA (mtDNA), and the genomic ancestry was obtained using 48 autosomal insertion-deletion ancestry informative markers (AIM). Of the 492 individuals, 74.6% self-declared as White, 13.8% as Brown and 10.4% as Black. Classification of the mtDNA haplogroups showed that 46.3% had African mtDNA, and the genomic ancestry analysis showed that the main contribution was European (57.4%). When we looked at the distribution of mtDNA and genomic ancestry according to the self-declared ethnicities from 367 individuals who self-declared as White, 37.6% showed African mtDNA, and they had a high contribution of European genomic ancestry (63.3%) but also a significant contribution of African ancestry (22.2%). Of the 68 individuals who self-declared as Brown, 25% showed Amerindian mtDNA and similar contribution of European and African genomic ancestries. Of the 51 subjects who self-declared as black, 80.4% had African mtDNA, and the main contribution of genomic ancestry was African (55.6%), but they also had a significant proportion of European ancestry (32.1%). The Brazilian population had a uniform degree of Amerindian genomic ancestry, and it was only with the use of genetic markers (autosomal or mitochondrial) that we were able to capture Amerindian ancestry information. Additionally, it was possible to observe a high degree of heterogeneity in the ancestry for both types of genetic markers, which shows the high genetic admixture that is present in the Brazilian population. We suggest that in epidemiological studies, the use of these methods could provide complementary information.  相似文献   

18.
Older Puerto Ricans living in the continental U.S. suffer from higher rates of diabetes, obesity, cardiovascular disease and depression compared to non-Hispanic White populations. Complex diseases, such as these, are likely due to multiple, potentially interacting, genetic, environmental and social risk factors. Presumably, many of these environmental and genetic risk factors are contextual. We reasoned that racial background may modify some of these risk factors and be associated with health disparities among Puerto Ricans. The contemporary Puerto Rican population is genetically heterogeneous and originated from three ancestral populations: European settlers, native Taíno Indians, and West Africans. This rich-mixed ancestry of Puerto Ricans provides the intrinsic variability needed to untangle complex gene–environment interactions in disease susceptibility and severity. Herein, we determined whether a specific ancestral background was associated with either of four major disease outcomes (diabetes, obesity, cardiovascular disease, and depression). We estimated the genetic ancestry of 1,129 subjects from the Boston Puerto Rican Health Study based on genotypes of 100 ancestry informative markers (AIMs). We examined the effects of ancestry on tests of association between single AIMs and disease traits. The ancestral composition of this population was 57.2% European, 27.4% African, and 15.4% Native American. African ancestry was negatively associated with type 2 diabetes and cardiovascular disease, and positively correlated with hypertension. It is likely that the high prevalence rate of diabetes in Africans, Hispanics, and Native Americans is not due to genetic variation alone, but to the combined effects of genetic variation interacting with environmental and social factors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
U.S. populations are genetically admixed, but surprisingly little empirical data exists documenting the impact of such heterogeneity on type I and type II error in genetic-association studies of unrelated individuals. By applying several complementary analytical techniques, we characterize genetic background heterogeneity among 810 self-identified African American subjects sampled as part of a multisite cohort study of cardiovascular disease in older adults. On the basis of the typing of 24 ancestry-informative biallelic single-nucleotide-polymorphism markers, there was evidence of substantial population substructure and admixture. We used an allele-sharing-based clustering algorithm to infer evidence for four genetically distinct subpopulations. Using multivariable regression models, we demonstrate the complex interplay of genetic and socioeconomic factors on quantitative phenotypes related to cardiovascular disease and aging. Blood glucose level correlated with individual African ancestry, whereas body mass index was associated more strongly with genetic similarity. Blood pressure, HDL cholesterol level, C-reactive protein level, and carotid wall thickness were not associated with genetic background. Blood pressure and HDL cholesterol level varied by geographic site, whereas C-reactive protein level differed by occupation. Both ancestry and genetic similarity predicted the number and quality of years lived during follow-up, but socioeconomic factors largely accounted for these associations. When the 24 genetic markers were tested individually, there were an excess number of marker-trait associations, most of which were attenuated by adjustment for genetic ancestry. We conclude that the genetic demography underlying older individuals who self identify as African American is complex, and that controlling for both genetic admixture and socioeconomic characteristics will be required in assessing genetic associations with chronic-disease-related traits in African Americans. Complementary methods that identify discrete subgroups on the basis of genetic similarity may help to further characterize the complex biodemographic structure of human populations.  相似文献   

20.
African Americans (AAs) tend to have lower total adiponectin levels compared to European Americans (EA); however, it is not known whether race affects adiponectin multimer distribution and their relationships to metabolic traits. We measured total adiponectin, high molecular weight (HMW), low molecular weight (LMW) (i.e., hexamer), and trimer adiponectin in 132 normoglycemic premenopausal women (75 AAs, 57 EAs), together with measures of total and abdominal fat, plasma lipids, insulin sensitivity (S(i)), and genetic admixture estimates. We found that lower total adiponectin in AAs was explained by reduced LMW, and trimer forms because levels of HMW did not differ between races. In EAs, HMW was highly correlated with multiple metabolic syndrome traits. In contrast, the LMW and trimer forms were most highly correlated with metabolic traits in AAs, including abdominal adiposity, lipids, and S(i). At similar levels of visceral adiposity, AAs exhibited significantly lower LMW adiponectin than EAs. Similarly, at comparable levels of HMW and LMW adiponectin, AAs were more insulin resistant than their EA counterparts. In conclusion, (i) serum adiponectin is lower in AAs predominantly as a result of reduced concentrations of LMW and trimers multimeric forms; (ii) LMW and trimer, not HMW, are most broadly correlated with metabolic traits in AAs. Thus, HMW adiponectin may exert less bioactivity in explaining the metabolic syndrome trait cluster in populations of predominant African genetic background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号