首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Normal uveal melanocytes in culture   总被引:1,自引:0,他引:1  
Normal uveal melanocytes of rhesus and cynomolgus macaques can be grown in culture for 3-9 months and subcultured a few times. Postnatal and adult choroidal melanocytes are terminally differentiated cells. They are melanin-containing but not actively melanin-synthesizing cells. They do not undergo cell division, nor do they incorporate tritiated thymidine, but otherwise they are metabolically active. Postnatal and young adult iridial melanocytes are metabolically more active than choroidal cells. They require a feeder cell layer for attachment and to be maintained in a healthy condition. An endothelial cell line established from a rhesus fetal choroid-retina proves to be an effective feeder layer for adult iridial cells. Fetal uveal melanocytes divide slowly and usually require some stimulus and a special culture environment supplemented with 12-O-tetradecanolphorbol-13-acetate and cholera toxin. They can grow and differentiate in vitro. Iridial melanocytes grow and change into cells resembling postnatal choroidal melanocytes. Similar changes occur during development in utero. These findings further suggest that, in vivo, iridial melanocytes migrate and mature to become choroidal melanocytes.  相似文献   

3.
4.
Brain metastasis is a major contributor to cancer mortality, yet, the genetic changes underlying the development of this capacity remain poorly understood. RASSF proteins are a family of tumor suppressors that often suffer epigenetic inactivation during tumorigenesis. However, their epigenetic status in brain metastases has not been well characterized. We have examined the promoter methylation of the classical RASSF members (RASSF1A-RASSF6) in a panel of metastatic brain tumor samples. RASSF1A and RASSF2 have been shown to undergo promoter methylation at high frequency in primary lung and breast tumors and in brain metastases. Other members exhibited little or no methylation in these tumors. In examining melanoma metastases, however, we found that RASSF6 exhibits the highest frequency of inactivation in melanoma and in melanoma brain metastases. Most melanomas are driven by an activating mutation in B-Raf. Introduction of RASSF6 into a B-RafV600E-containing metastatic melanoma cell line inhibited its ability to invade through collagen and suppressed MAPK pathway activation and AKT. RASSF6 also appears to increase the association of mutant B-Raf and MST1, providing a potential mechanism by which RASSF6 is able to suppress MAPK activation. Thus, we have identified a novel potential role for RASSF6 in melanoma development. Promoter methylation leading to reduced expression of RASSF6 may play an important role in melanoma development and may contribute to brain metastases.  相似文献   

5.
《Epigenetics》2013,8(11):1496-1503
Brain metastasis is a major contributor to cancer mortality, yet, the genetic changes underlying the development of this capacity remain poorly understood. RASSF proteins are a family of tumor suppressors that often suffer epigenetic inactivation during tumorigenesis. However, their epigenetic status in brain metastases has not been well characterized. We have examined the promoter methylation of the classical RASSF members (RASSF1A-RASSF6) in a panel of metastatic brain tumor samples. RASSF1A and RASSF2 have been shown to undergo promoter methylation at high frequency in primary lung and breast tumors and in brain metastases. Other members exhibited little or no methylation in these tumors. In examining melanoma metastases, however, we found that RASSF6 exhibits the highest frequency of inactivation in melanoma and in melanoma brain metastases. Most melanomas are driven by an activating mutation in B-Raf. Introduction of RASSF6 into a B-RafV600E-containing metastatic melanoma cell line inhibited its ability to invade through collagen and suppressed MAPK pathway activation and AKT. RASSF6 also appears to increase the association of mutant B-Raf and MST1, providing a potential mechanism by which RASSF6 is able to suppress MAPK activation. Thus, we have identified a novel potential role for RASSF6 in melanoma development. Promoter methylation leading to reduced expression of RASSF6 may play an important role in melanoma development and may contribute to brain metastases.  相似文献   

6.
The tumor suppressor candidate gene Ras association domain family 1, isoform A (RASSF1A) encodes a microtubule-associated protein that is implicated in the regulation of cell proliferation, migration, and apoptosis. Several studies indicate that down-regulation of RASSF1A resulting from promoter hypermethylation is a frequent epigenetic abnormality in malignant melanoma. In this study, we report that compared with melanocytes in normal skins or benign skin lesions, RASSF1A is down-regulated in melanoma tissues as well as cell lines, and its expression negatively correlates with lymph node metastasis. Following ectopic expression in RASSF1A-deficient melanoma A375 cell line, RASSF1A reduces cell viability, suppresses cell-cycle progression but enhances apoptotic cell death. In vivo, RASSF1A expression inhibits the tumorigenic potential of A375 cells in nude mice, which also correlates with decreased cell proliferation and increased apoptosis. On the molecular level, ectopic RASSF1A expression leads to differential expression of 209 genes, including 26 down-regulated and 183 up-regulated ones. Among different signaling pathways, activation of the apoptosis signal-regulating kinase 1 (ASK1)/p38 MAP kinase signaling is essential for RASSF1A-induced mitochondrial apoptosis, and the inhibition of the Akt/p70S6 kinase/eIF4E signaling is also important for RASSF1A-mediated apoptosis and cell-cycle arrest. This is the first study exploring the biological functions and the underlying mechanisms of RASSF1A during melanoma development. It also identifies potential targets for further diagnosis and clinical therapy.  相似文献   

7.
Metastasis of tumor cells to distant organs is the leading cause of death in melanoma. Yet, the mechanisms of metastasis remain poorly understood. One key question is whether all cells in a primary tumor are equally likely to metastasize or whether subpopulations of cells preferentially give rise to metastases. Here, we identified a subpopulation of uveal melanoma cells expressing the multidrug resistance transporter ABCB1 that are highly metastatic compared to ABCB1(-) bulk tumor cells. ABCB1(+) cells also exhibited enhanced clonogenicity, anchorage-independent growth, tumorigenicity and mitochondrial activity compared to ABCB1(-) cells. A375 cutaneous melanoma cells contained a similar subpopulation of highly metastatic ABCB1(+) cells. These findings suggest that some uveal melanoma cells have greater potential for metastasis than others and that a better understanding of such cells may be necessary for more successful therapies for metastatic melanoma.  相似文献   

8.
目的:分析骨肉瘤组织中RASSF1A基因甲基化状况。方法:运用甲基化特异性PCR(MSP)分别检测44例骨肉瘤组织及相应的癌旁组织中RASSF1A基因启动子甲基化状态并分析其临床病理意义。结果:骨肉瘤组织中RASSF1A基因异常甲基化率(61.4%)显著高于癌旁正常骨组织中RASSF1A基因的异常甲基化率(20.5%),二者之间差异具有统计学意义(P<0.05)。RASSF1A基因异常甲基化导致组织中RASSF1A基因mRNA和蛋白表达水平均显著降低。另外,RASSF1A基因异常甲基化和肿瘤组织分化程度及全身有无转移情况有相关性(P值分别为0.022和0.016),而与患者年龄、性别、肿瘤位置及大小等临床特征无关(P值分别为0.6944,0.977,0.786和0.831)。结论:RASSF1A基因启动子高甲基化可能是导致其在骨肉瘤中表达水平降低的分子机制之一,有望成为骨肉瘤早期辅助诊断的一个重要分子标志物。  相似文献   

9.
目的:分析骨肉瘤组织中RASSF1A基因甲基化状况。方法:运用甲基化特异性PCR(MSP)分别检测44例骨肉瘤组织及相应的癌旁组织中RASSF1A基因启动子甲基化状态并分析其临床病理意义。结果:骨肉瘤组织中RASSF1A基因异常甲基化率(61.4%)显著高于癌旁正常骨组织中RASSF1A基因的异常甲基化率(20.5%),二者之间差异具有统计学意义(P〈0.05)。RASSF1A基因异常甲基化导致组织中RASSF1A基因mRNA和蛋白表达水平均显著降低。另外,RASSF1A基因异常甲基化和肿瘤组织分化程度及全身有无转移情况有相关性(P值分别为0.022和0.016),而与患者年龄、性别、肿瘤位置及大小等临床特征无关(P值分别为0.6944,0.977,0.786和0.831)。结论:RASSF1A基因启动子高甲基化可能是导致其在骨肉瘤中表达水平降低的分子机制之一,有望成为骨肉瘤早期辅助诊断的一个重要分子标志物。  相似文献   

10.
α-MSH, a proopiomelanocortin (POMC)-derived peptide, is known to be produced in the pituitary, the skin, and melanoma tumors and to possess many biological effects, mainly on melanocyte pigmentation and growth. Moreover, the melanocyte expresses adhesion molecules, including ICAM-1. The latter has been reported to play a role in melanoma spread and associated metastatic process. We conducted a study in order to evaluate the possible effect of MSH on ICAM-1 expression in human cultured malignant and normal melanocytes. Our data show that α-MSH inhibits ICAM-1 expression stimulated by TNF in a concentration-dependent manner, both at the protein and gene expression level. Ninety percent inhibition was obtained with 10 nM MSH, while 50% inhibition was achieved with 1 nM. Endogenous cAMP elevation with forskolin as well as an exogenous cAMP stable analogue (Sp-cAMPS) produced the same inhibitory effect. A screening of malignant melanocytes showed that inhibition of ICAM-1 expression could be achieved only in those cells expressing detectable MSH receptors and seemed to correlate with the number of binding sites. In conclusion, our data strongly suggest α-MSH as a potent inhibitor of ICAM-1 expression in malignant melanocytes acting through MSH receptor stimulation and subsequent cAMP increase. J. Cell. Physiol. 175:276–282, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
12.
The synthesis of melanin intermediates through tyrosinase (TYR) involves the production of cytotoxic free radicals. By using recombinant adenoviruses that express TYR, tyrosinase-related protein 1 (TYRP1) or DOPAchrome tautomerase (DCT), we analyzed the biological function of these proteins with regard to melanin production and the growth of melanocytes, fibroblasts, melanoma cells and nonmelanoma cancer cells. High-level expression of TYR produced newly synthesized melanin and induced cell death in all of these cells. However, when TYRP1 or DCT was coexpressed with TYR in melanocytes and melanoma cells, TYR-mediated cell death was clearly decreased. This decrease was not observed in nonmelanocytic cells. Western blot analysis and measurement of enzyme activity revealed that the expression of TYRP1 or DCT had little effect on the amount or activity of cointroduced TYR in either the melanocytic or nonmelanocytic cells. In cells expressing both TYR and TYRP1 or TYR and DCT, the total amount of melanin and/or eumelanin increased substantially more than that in cells expressing TYR alone. On the other hand, the level of pheomelanin was similar in these three cell types. These findings suggest that TYRP1 and DCT play an important role in suppressing TYR-mediated cytotoxicity in melanocytic cells without decreasing TYR expression and/or activity. These biological activities of TYRP1 and DCT may work through the interaction with TYR in melanosomal compartment.  相似文献   

13.
Xanthohumol (XH) is the most abundant prenylated flavonoid found in the hop plant (Humulus lupulus L.) and has previously been shown to have depigmenting effects in B16F10 mouse melanoma cells; however, studies of its depigmenting efficacy in human melanocytes are still lacking. In this work, we explored the effects of XH on melanogenesis in MNT-1 human melanoma cells and normal human melanocytes from darkly-pigmented skin (HEM-DP). XH was screened for cytotoxicity over 48 h, and subsequently tested on melanogenesis in MNT-1 cells. XH was further tested in HEM-DP cells for melanin synthesis and melanosome export; dendricity was quantitated to assess effects on melanosome export. Melanosome degradation was studied in human keratinocytes (HaCaT). Our results showed that XH inhibited melanin synthesis in MNT-1 cells at 30 μM but increased intracellular tyrosinase activity without affecting ROS levels. In HEM-DP cells, XH robustly suppressed cellular tyrosinase activity at nontoxic concentrations (2.5–5 μM) without any effect on melanin synthesis. However, XH inhibited melanosome export by reducing dendrite number and total dendrite length. Further testing in HaCaT cells demonstrated that XH induced melanosome degradation at low micromolar concentrations without any cytotoxicity. In summary, our results demonstrate that XH at low micromolar concentrations might hold promise as a potent inhibitor of human pigmentation by primarily targeting melanin export and melanin degradation. Further studies to elucidate the signaling mechanisms of action of melanosome export inhibition by XH and in vivo efficacy are warranted.  相似文献   

14.
Summary To study antitumor immunity in patients with choroidal melanoma, T cells were generated from the peripheral blood of choroidal melanoma patients by mixed lymphocyte/tumor cell culture (MLTC). Because autologous tumors are generally unavailable, an allogeneic choroidal melanoma cell line, OCM-1, was used as the specific stimulus. Lymphocyte cultures from 27 patients were characterized by cell-surface phenotypes, patterns of reactivity towards cells of the melanocytic origin and T-cell-receptor gene usage. Antimelanoma reactivity was found in cell-sorter-purified CD4+ and CD8+ T cell subsets. To analyze this reactivity, sorter-purified CD4+ and CD8+ cells from a MLTC were cloned by limiting dilution in the presence of exogenous interleukin-2 and interleukin-4 as well as irradiated OCM-1. Under these conditions, CD4+ T cells did not proliferate, perhaps because of the absence of antigen-presenting cells. However, CD8+ grew vigorously and 29 cytolytic CD8+ T cell clones were isolated. On the basis of their pattern of lysis of OCM-1, a skin melanoma cell line M-7 and its autologous lymphoblastoid cell line LCL-7, the clones were categorized into three groups. Group 1, representing 52% of the clones, lysed all three target cells, and are alloreactive. However, since OCM-1 and M-7 did not share class I antigens, these clones recognized cross-reactive epitope(s) of the histocompatibility locus antigen (HLA) molecule. Group 2, constituting 28% of the clones, lysed both the ocular and skin melanoma cell lines but not LCL-7, and were apparently melanoma-specific. Unlike classical HLA-restricted cytolytic T lymphocytes, these T cells might mediate the lysis of melanoma cells via other ligands or a more degenerate type of HLA restriction. For the latter, the HLA-A2 and -A28 alleles would have to act interchangeably as the restriction element for shared melanoma-associated antigen(s). Group 3, representing only 10% of the T cell clones, was cytotoxic only to OCM-1, but not to M-7 or LCL-7. These clones may recognize antigens unique to ocular melanoma cells. Our data suggest that choroidal melanoma patients can recognize melanoma-associated antigens common to both ocular and cutaneous melanoma cells, and presumbly their autologous tumor. Thus, choroidal melanoma, like its skin counterpart, may be responsive to immunotherapeutic regimens such as active specific or adoptive cellular immunotherapy.This work is supported by National Institutes of Health research grants CA 36 233 and EY 9031, the Lucy Adams Memorial Fund and support from the Concern Foundation  相似文献   

15.
16.
During embryonic development in vertebrates, the neural crest‐derived melanoblasts migrate along the dorsolateral axis and cross the basal membrane separating the dermis from the epidermis to reach their final location in the interfollicular epidermis and epidermal hair follicles. Neoplastic transformation converts melanocytes into highly invasive and metastatic melanoma cells. In vitro, these cells extend various types of protrusions and adopt two interconvertible modes of migration, mesenchymal and amoeboid, driven by different signalling molecules. In this review, we describe the major contributions of natural mouse mutants, mouse models generated by genetic engineering and in vitro culture systems, to identification of the genes, signalling pathways and mechanisms regulating the migration of normal and pathological cells of the melanocyte lineage, at both the cellular and molecular levels.  相似文献   

17.

Background  

Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, and nearly 40% of UM will develop metastasis that will ultimately lead to death. The Epithelial Cell Adhesion Molecule (EpCAM) is a type I transmembrane glycoprotein expressed by carcinomas of head and neck, ovary, colon, breast, kidney and lung. Recently, antibodies against EpCAM such as Edrecolomab and Catumaxomab were developed, and clinical trials with these antibodies have been used in several types of neoplasia. We studied the expression of EpCAM in UM.  相似文献   

18.
Monosomy‐3 in primary uveal melanoma (UM) is associated with a high risk of metastasis and mortality. Although circulating melanoma cells (CMC) can be found in most UM patients, only approximately 50% of the patients develop metastases. We utilized a novel immuno‐FISH assay to detect chromosome‐3 in intact CMC isolated by dual immunomagnetic enrichment. Circulating melanoma cells were detected in 91% of the patients (n = 44) with primary non‐metastatic UM, of which 58% were positive for monosomy‐3. The monosomy‐3 status of CMC corresponded to the monosomy‐3 status of the primary tumor in 10 of the 11 patients where this could be tested. Monosomy‐3 in the CMC was associated with an advanced tumor stage (P = 0.046) and was detected in all four patients who developed metastasis within the follow‐up period of 4 yr. This non‐invasive technique may enable the identification of UM patients at risk for metastasis particularly when a primary tumor specimen is unavailable.  相似文献   

19.
20.
In the vertebrate embryo, melanocytes arise from the neural crest, migrate to and colonize the basal layer within the skin and skin appendages. Post-migratory melanocytes are securely attached to the basement membrane, and their morphology, growth, adhesion, and migration are under control of neighboring keratinocytes. Melanoma is a malignant tumor originated from melanocytes or their progenitor cells. During melanocyte transformation and melanoma progression, melanocytes lose their interactions with keratinocytes, resulting in uncontrolled proliferation and invasion of the malignant cells. Melanoma cells at the advanced stages often lack melanocytic features and resemble multipotent progenitors, which are a potential melanocyte reservoir in human skin. In this mini-review, we will summarize findings on cell-cell interactions that are responsible for normal melanocyte homeostasis, stem cell self-renewal, and differentiation. Our ultimate goal is to define molecules and pathways, which are essential for normal cell-cell interactions but deregulated in melanoma formation and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号