共查询到20条相似文献,搜索用时 15 毫秒
1.
Sango K Suzuki T Yanagisawa H Takaku S Hirooka H Tamura M Watabe K 《Journal of neurochemistry》2006,98(2):446-458
We investigated the polyol pathway activity and the gene expression profiles in immortalized adult mouse Schwann cells (IMS32) under normal (5.6 mM) and high (30 and 56 mM) glucose conditions for 7-14 days in culture. Messenger RNA and the protein expression of aldose reductase (AR) and the intracellular sorbitol and fructose contents were up-regulated in IMS32 under high glucose conditions compared with normal glucose conditions. By employing DNA microarray and subsequent RT-PCR/northern blot analyses, we observed significant up-regulation of the mRNA expressions for serum amyloid A3 (SAA3), angiopoietin-like 4 (ANGPTL4) and ecotropic viral integration site 3 (Evi3), and the down-regulation of aldehyde reductase (AKR1A4) mRNA expression in the cells under high glucose (30 mM) conditions. The application of an AR inhibitor, SNK-860, to the high glucose medium ameliorated the increased sorbitol and fructose contents and the reduced AKR1A4 mRNA expression, while it had no effect on mRNA expressions for SAA3, ANGPTL4 or Evi3. Considering that the exposure to the high glucose (>or= 30 mM) conditions mimicking hyperglycaemia in vivo accelerated the polyol pathway in IMS32, but not in other previously reported Schwann cells, the culture system of IMS32 under those conditions may provide novel findings about the polyol pathway-related abnormalities in diabetic neuropathy. 相似文献
2.
Myelin formation during peripheral nervous system development, as well as myelin repair after injury and in disease, requires multiple intrinsic and extrinsic signals. Neurotrophin-4 (NT-4) is a member of the neurotrophin family, which regulates the development of neuronal networks by participating in the growth of neuronal processes, synaptic development and plasticity, neuronal survival, and differentiation. However, the intracellular signaling pathways by which NT-4 participates in myelination by Schwann cells remain elusive. In this study, we examined the effects of NT-4 on the expression of compact myelin proteins in cultured Schwann cells. Using real-time quantitative RT-PCR and western blotting, we found that NT-4 could significantly enhance the expression of myelin protein zero (MPZ) but not the expression of myelin basic protein or peripheral myelin protein 22. Further, knockdown of truncated TrkB with small interfering RNA could eliminate the effect of NT-4 on MPZ expression. Moreover, we demonstrated that the NT-4-enhanced MPZ expression depended on Akt and mTORC1 signaling. Taken together, these results suggest that NT-4 binds TrkB to enhance the expression of MPZ in Schwann cells, probably through the PI3K/Akt/mTORC1 signaling pathway, thus contributing to myelination. 相似文献
3.
Michal Marom Gilad Ben-Baruch Joseph Roitelman Yoel Kloog 《Cellular and molecular neurobiology》1994,14(2):119-132
Summary 1. The relationships among the mevalonic acid (MVA) forming enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (CoA) reductase, cell growth and differentiation, and the cytotoxic effects of the reductase inhibitor lovastatin were studied in PC-12 cells, exposed to growth factors.2. When added individually, nerve growth factor (NGF), basic fibroblast growth factor, and epidermal growth factor induce an increase in HMG-CoA reductase activity in cells grown in serum-containing medium. In the presence of serum, the effect of NGF on HMG-CoA reductase is persistent.3. Short-term serum starvation and long-term NGF treatment, in combination, have an additive effect, resulting in a high reductase activity.4. Unlike serum and MVA, which downregulate levels of HMG-CoA reductase by accelerating its degradation, NGF upregulates reductase by slowing the rate of its degradation. This mechanism, however, appears to operate only in the presence of serum, as after prolonged growth with NGF in serum-free medium, cells have a low reductase activity.5. PC-12 cells grown in the absence of NGF are highly sensitive to lovastatin (25 µM) and more than 70% of the cells die after 48 hr. NGF confers lovastatin resistance on cells grown in the presence or in the absence of serum (only 30–40% cell death after 48 hr with lovastatin).6. NGF-induced resistance on lovastatin develops with time and is apparent only in the well-differentiated PC-12 cells whether or not the cells express a high reductase activity.7. Thus, levels of HMG-CoA reductase activity and lovastatin resistance in PC-12 cells are not directly correlated, though clearly inversed lovastatin cytotoxicity and elevated reductase activities are expressed during the period of cell proliferation.8. These data suggest that fully differentiated neuronal cells may not be affected by prolonged high doses of lovastatin. 相似文献
4.
Stefanis L Kholodilov N Rideout HJ Burke RE Greene LA 《Journal of neurochemistry》2001,76(4):1165-1176
Mutations in the alpha-synuclein gene have recently been identified in families with inherited Parkinson's disease and the protein product of this gene is a component of Lewy bodies, indicating that alpha-synuclein is involved in Parkinson's disease pathogenesis. A role for normal alpha-synuclein in synaptic function, apoptosis or plasticity responses has been suggested. We show here that in rat pheochromocytoma PC12 cells synuclein-1, the rat homolog of human alpha-synuclein, is highly and selectively up-regulated at the mRNA and protein levels after 7 days of nerve growth factor treatment. Synuclein-1 expression appears neither sufficient nor necessary for the neuritic sprouting that occurs within 1-2 days of nerve growth factor treatment. Rather, it likely represents a component of a late neuronal maturational response. Synuclein-1 redistributes diffusely within the cell soma and the neuritic processes in nerve growth factor-treated PC12 cells. Cultured neonatal rat sympathetic neurones express high levels of synuclein-1, with a diffuse intracellular distribution, similar to neuronal PC12 cells. These results suggest that levels of synuclein-1 may be regulated by neurotrophic factors in the nervous system and reinforce a role for alpha-synuclein in plasticity-maturational responses. In contrast, there is no correlation between synuclein expression and apoptotic death following trophic deprivation. 相似文献
5.
Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells 总被引:2,自引:0,他引:2
Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro . NSCs were exposed to physiological d -glucose concentration (PG, 5 mmol/L), PG with l -glucose (25 mmol/L), or high d -glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy. 相似文献
6.
Neuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury 总被引:1,自引:0,他引:1
Hashimoto M Ishii K Nakamura Y Watabe K Kohsaka S Akazawa C 《Journal of neurochemistry》2008,107(4):918-927
The physiological roles of sonic hedgehog (Shh) have been intensively characterized in development of various organs. However, their functions in adult tissues have not been fully elucidated. We investigated the expression and the potential function of Shh in crush-injured adult rat sciatic nerves. The Shh expression was up-regulated in Schwann cells adjacent to the injured site. The time-course analyses of various neurotrophic factors revealed the up-regulation of Shh mRNA followed by that of brain-derived neurotrophic factor (BDNF) mRNA. The continuous administration of cyclopamine, a hedgehog signal inhibitor, to the injured site suppressed the increase of BDNF expression and deteriorated the survival of motor neurons in lumbar spinal cord. Treatment of exogenous Shh in cultured Schwann cells enhanced the BDNF expression. The BDNF promoter activity (exon I and II) was increased in IMS32 cells co-transfected with Shh and its receptor Smoothened. These findings imply that the up-regulated expression of Shh in Schwann cells may play an important role in injured motor neurons through the induction of BDNF. 相似文献
7.
神经营养因子诱导分化的神经元样PC12细胞分裂的研究 总被引:4,自引:0,他引:4
神经营养因子(nerve growth factor,NGF)诱导PC12细胞分化产生的神经元样细胞一直被认为属于分裂后的细胞,没有分裂能力。然而在本研究中,我们观察了一些已经发生分化的PC12细胞,这些细胞长有很长的神经突起,在形态上属于神经元样细胞。在这些细胞中,我们不仅检测到DNA合成,而且观察到这些细胞的分裂现象。更令人感兴趣的是,除了胞体发生分裂外,位于胞体分裂位置的突起也一分为二,分别分配给两个子细胞。这些结果说明,形态发生分化的神经元样PC12细胞仍有分裂能力。本研究首次报道神经元样PC12细胞及其突起能发生分裂。 相似文献
8.
Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells 总被引:1,自引:0,他引:1
Glial cell line-derived neurotrophic factor (GDNF) family receptor alpha-1 (GFRalpha-1) is a receptor component of GDNF that associates with and activates the tyrosine kinase receptor Ret. To further understand GDNF and its receptor system in the PNS, we first characterized the expression of GFRalpha-1 in bovine peripheral nerve in vivo. GFRalpha-1 immunoreactivity was localized adjacent to the outermost layer of myelin sheath, as well as in the endoneurium and axoplasm. In a fractionation study, GFRalpha-1 was recovered mostly in the soluble fraction, although a small amount was recovered in the membrane fraction. A substantial amount of GFRalpha-1 in the membrane fraction was extractable by detergent and alkaline conditions. To further clarify the expression of GFRalpha-1 in Schwann cells, we examined cultured rat Schwann cells and the Schwannoma cell line RT4. Schwann cells expressed GFRalpha-1 in both the soluble/cytosolic and membrane fractions, and the membrane form of GFRalpha-1 was expressed at the outer surface of the Schwann cell plasma membrane. We also confirmed the secretion of the soluble form of GFRalpha-1 from Schwannoma cells in a metabolic labeling experiment. These data contribute to our knowledge of the production, expression and functions of GFRalpha-1 in the PNS. 相似文献
9.
Exposure of rat pheochromocytoma PC12 cells to 0.1 mM 6-aminonicotinamide (6AN) for 24 hours resulted in a 500-fold increase in 6-phosphogluconate indicating active metabolism of glucose via the oxidative enzymes of the pentose phosphate pathway. Amounts of 6-phosphogluconate that accumulated in 6AN-treated cells at 24 hours were significantly increased by treatment of the cells with nerve growth factor (NGF) (100 ng 7S/ml) suggesting that metabolism of glucose via the pentose pathway at this time was enhanced by NGF. This stimulation of metabolism via the pentose pathway is probably a late response to NGF because initial rates of 6-phosphogluconate accumulation in 6AN-treated cells were the same in the presence and absence of NGF. Moreover, amounts of14CO2 generated from 1-[14CO2]glucose during the initial six hour incubation period were the same in control and NGF-treated cells. Specific activities of hexose phosphates labeled from 1-[14CO2]glucose were also the same in control and NGF-treated cells. The observation that 6AN inhibited metabolism via the pentose phosphate pathway but failed to inhibit NGF-stimulated neurite outgrowth suggests that NADPH required for lipid biosynthesis accompanying NGF-stimulated neurite outgrowth from PC12 cells can be derived from sources other than, or in addition to, the oxidative enzymes of the pentose phosphate pathway.Special Issue dedicated to Dr. O. H. Lowry. 相似文献
10.
The stress-activated protein kinases (SAPKs) are differentially activated by a variety of cellular stressors in PC12 cells. SAPK activation has been linked to the induction of apoptotic cell death upon serum withdrawal from undifferentiated cells or following nerve growth factor (NGF) withdrawal of neuronally differentiated PC12 cells. However, withdrawal of trophic support from differentiated cells led to only a very modest elevation of SAPK activity and led us to investigate the basis of the relative insensitivity of these enzymes to stressors. NGF-stimulated differentiation of the cells resulted in the elevation of basal SAPK activity to levels four- to sevenfold greater than in untreated cells, which was correlated with an approximate fivefold increase in SAPK protein levels. Paradoxically, in NGF-differentiated PC12 cells, exposure to cellular stressors provoked a proportionately smaller stimulation of SAPK activity than that observed in naive cells, despite the presence of much higher levels of SAPK protein. The insensitivity of SAPK to activation by stressors was reflective of the activity of the SAPK activator SEK, whose activation was also diminished following NGF differentiation of the cells. The data demonstrate that SAPKs are subject to complex controls through both induction of SAPK expression and the regulation mediated by upstream elements within this pathway. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 537–549, 1998 相似文献
11.
Astrid Zimmermann Arne Sutter John Samuelson Eric M. Shooter 《Journal of cellular biochemistry》1978,9(3):351-361
When single-cell suspensions prepared from embroyonic day 8 (E8) chick sensory ganglia are incubated with nerve growth factor (NGF), anti-NGF antiserum, and complement, an NGF-dependent cytotoxic kill of 20 (±3)% of the ganglia cells is observed. This percentage is increased by a factor of two when only the neuronal cells are tested. No kill is observed on the nonneuronal cell population representing 50% of the ganglia dissociate. When E8 sensory ganglia cells are cultured in the presence of NGF following cytotoxic kill, the large, phase-bright NGF-reponsive neurons are missing from the culture. These results indicate that the cells recognized in the cytotoxicity assay have to carry NGF-binding sites of type I, which is the one with the higher affinity of the two types of NGF-binding sites (I and II) present on sensory ganglia cells. This conclusion is further supported by the following data: (a) half maximal cytotoxicity is reached already at a concentration of NGF which is below the KD of binding site I; (b) a washing step which removes all NGF bound to type II receptors while leaving a high percentage of type I receptors occupied has no effect on the percentage of ganglia cells killed. Using the cytotoxicity assay the presence of high-affinity binding sites of type I can be demonstrated on sensory ganglia cells from E8 chick embryos but not from E4 embryos and not on liver and heart cells from E8 embryos. Further, type I receptor-bearing cells were detectable in the brain using this assay. At E8, NGF receptors could be detected on cells of the forebrain and the tectum but not on brain stem cells. Cytotoxic kill of forebrain cells was found to be especially high at E8 and E9, and decreased by E10. 相似文献
12.
Early-response genes (ERGs) are rapidly induced by nerve growth factor (NGF) in the PC12 rat pheochromocytoma cell line. To analyze the possible role of Ras and ERGs in neuronal differentiation, experiments were carried out to study the involvement of Ras proteins in the NGF-stimulated expression of two ERG-coded proteins (c-Fos and Zif268) implicated in NGF signaling. Using PC12 subclones expressing the dominant negative Ha-Ras Asn-17 protein, NGF-induced expression, phosphorylation and DNA-binding of these ERG products were found to be not sufficient to convey the biological response of PC12 cells to NGF. 相似文献
13.
Rapid axoplasmic transport of insulin-like growth factor I in the sciatic nerve of adult rats 总被引:5,自引:0,他引:5
Summary Somatomedin C (Sm-C; insulin-like growth factor I; IGF-I) is a polypeptide (Mr 7649), often dependent on growth hormone (GH), with trophic effects on several different tissues. Monospecific IGF-I antisera were used to investigate its localization in the sciatic nerve and corresponding nerve cells, as well as its possible axoplasmic transport in the adult rat. IGF-I-like immunoreactivity was demonstrated in anterior horn motor nerve cells in the spinal cord and in spinal- and autonomic ganglion nerve cells. Faint IGF-I immunoreactivity was under normal conditions observed in axons of the sciatic nerve and in the Schwann cells. Using crush technique, accumulation of IGF-I immunoreactivity was seen in dilated axons within 2 h, both proximal and distal to the crush. However, only a small fraction of the anterogradely transported IGF-I immunoreactive material could be demonstrated to be transported in retrograde direction. Colchicine injected proximal to a crush prevented accumulation of IGF-I immunoreactivity proximal to the crush, but not distal to it.IGF-I-immunoreactive material is synthesized in the cell bodies of peripheral sensory and motor nerve cells. It is transported at rapid rates in the axoplasm of the sciatic nerve of adult rats both in anterograde and retrograde directions. We propose that axonally transported IGF-I may be released and exert trophic influence on innervated cells, tissues and organs. 相似文献
14.
Activation of PI3K-Akt-GSK3beta pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells 总被引:2,自引:0,他引:2
Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-alpha-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-alpha-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3beta or an uninhibitable mutant GSK3beta, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3beta) in HKC. Overexpression of wild type GSK3beta did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3beta abolished HGF inhibition of basal and TNF-alpha stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3beta are required for HGF-induced suppression of RANTES in HKC. 相似文献
15.
Ksiazek K Passos JF Olijslagers S von Zglinicki T 《Biochemical and biophysical research communications》2008,366(3):793-799
High glucose has been found to accelerate cell senescence in vitro. The exact mechanism of this effect is, however, still poorly understood. In this paper we show that human peritoneal mesothelial cells (HPMCs) propagated under high (30 mM) glucose were characterized by higher density of DNA double-strand breaks than cells exposed to standard (5 mM) glucose concentration. Under both low and high glucose conditions, the vast majority of DNA damage localized to non-telomeric regions of the genome. Moreover, exposure to high glucose resulted in increased accumulation of lipofuscin, increased production of superoxides and peroxides as well as reduced mitochondrial membrane potential and increased mitochondrial mass. Treatment of cells with the free radical scavenger PBN partially rescued the premature senescence caused by high glucose. Together, these results indicate that high glucose may accelerate senescence of HPMCs by impairing mitochondrial function, resulting in overproduction of reactive oxygen species and extensive DNA damage. 相似文献
16.
Schwann cells (SCs), the glial cells of the peripheral nerve system, play a key role in the regeneration of injured peripheral nerves. However, problems with the use of SCs to repair peripheral nerves include attenuated biologic properties and impaired function with ageing. Panaxydol (PND) effectively protects neurons against injury in degenerative diseases. We investigated the protective role of PND in SCs through immunocytochemistry and ELISA assay. PND promoted the expression and secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) by SCs in a dose-dependent manner at doses of 2.5-20 and 5.0-20 μM, respectively. The effects on both factors were maximal at 10 μM. PND also enhanced the synthesis of actin, a key component of the cytoskeleton. When we examined mitochondria in SCs with probes marked with rhodamine-123, fluorescence intensity was stronger in the PND group than in a control group, indicating a stabilized mitochondrial transmembrane potential. PND modified cytoskeleton dynamics and induced SCs to secrete and express neurotrophic factors (NTFs), and to resist high energy consumption in a dose-dependent manner. It exerted its maximum effect at 10 μM. PND treatment of SCs might be promising strategies for the application of these cells in repairing PNS injury by enhancing the biological properties. 相似文献
17.
The duration of intracellular signaling is thought to be a critical component in effecting specific biological responses. This paradigm is demonstrated by growth factor activation of the extracellular signal-regulated kinase (ERK) signaling cascade in the rat pheochromocytoma cell line (PC12 cells). In this model, sustained ERK activation induced by nerve growth factor (NGF) results in differentiation, whereas transient ERK activation induced by epidermal growth factor (EGF) results in proliferation in these cells. Recently, the immediate early gene product c-fos has been proposed to be a sensor for ERK signaling duration in fibroblasts. In this study, we ask whether this is true for NGF and EGF stimulation of PC12 cells. We show that NGF, but not EGF, can regulate both c-fos stability and activation in an ERK-dependent manner in PC12 cells. This is achieved through ERK-dependent phosphorylation of c-fos. Interestingly, distinct sites regulate enhanced stability and transactivation of c-fos. Phosphorylation of Thr325 and Thr331 are required for maximal NGF-dependent transactivation of c-fos. In addition, a consensus ERK binding site (DEF domain) is also required for c-fos transactivation. However, stability is controlled by ERK-dependent phosphorylation of Ser374, while phosphorylation of Ser362 can induce conformational changes in protein structure. We also provide evidence that sustained ERK activation is required for proper post-translational regulation of c-fos following NGF treatment of PC12 cells. Because these ERK-dependent phosphorylations are required for proper c-fos function, and occur sequentially, we propose that c-fos is a sensor for ERK signaling duration in the neuronal-like cell line PC12. 相似文献
18.
Hepatocyte growth factor exerts a proliferative effect on oval cells through the PI3K/AKT signaling pathway 总被引:17,自引:0,他引:17
Okano J Shiota G Matsumoto K Yasui S Kurimasa A Hisatome I Steinberg P Murawaki Y 《Biochemical and biophysical research communications》2003,309(2):298-304
Hepatocyte growth factor (HGF) is a potent mitogen for a variety of cells including hepatocytes. While rat oval cells are supposed to be one of hepatic stem cells, biological effects of HGF on oval cells and their relevant signal transduction pathways remain to be determined. We sought to investigate them on OC/CDE22 rat oval cells, which are established from the liver of rats fed a choline-deficient/DL-ethionine-supplemented diet. The oval cells were cultured on fibronectin-coated dishes and stimulated with recombinant HGF, transforming growth factor-alpha (TGF-alpha), and thrombopoietin (TPO) under the serum-free medium condition. HGF treatment enhanced [3H]thymidine incorporation into oval cells in a dose-dependent manner. On the contrary, treatment with TGF-alpha or TPO had no significant effects on [3H]thymidine incorporation into the oval cells. c-Met protein was phosphorylated at the tyrosine residues after the HGF treatment. AKT, extracellular signal-regulated kinase 1/2 (ERK1/2), and p70(s6k) were simultaneously activated after the HGF stimulation, peaking at 30min after the treatment. The activation of AKT, p70(s6k), and ERK1/2 induced by HGF was abolished by pre-treatment with LY294002, a phosphoinositide 3-OH kinase (PI3K) inhibitor, and U0126, a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, respectively. When the cells were pre-treated with LY294002 prior to the HGF stimulation, the proliferative action of HGF was completely abrogated, implying that the PI3K/AKT signaling pathway is responsible for the biological effect of HGF. These in vitro data indicate that HGF exerts a proliferative action on hepatic oval cells via activation of the PI3K/AKT signaling pathway. 相似文献
19.
20.
Pehar M Cassina P Vargas MR Castellanos R Viera L Beckman JS Estévez AG Barbeito L 《Journal of neurochemistry》2004,89(2):464-473
Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS. 相似文献