首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tissue distribution of TGF beta-1 RNA was examined within whole mouse embryos from implantation to 10.5 days gestational age and, in the developing heart, up to 8 days postpartum. The earliest high level expression of TGF beta-1 RNA is at 7.0 days postcoitum (p.c.) in the cardiac mesoderm. At 8.0 days gestational age, cardiac TGF beta-1 RNA expression is limited to endocardial cells. By 9.5 days p.c., this expression pattern becomes regionalized to those cells that overlie cardiac cushion tissue. High TGF beta-1 RNA levels continue to persist in endothelial cells of the heart valves until approximately one week postpartum. The TGF beta-1 RNA distribution was compared with the extracellular distributions of polypeptides for TGF beta and J1/tenascin. As previously reported, endothelial expression of TGF beta-1 RNA is correlated with mesenchymal expression of TGF beta polypeptide, suggesting a paracrine mode of action for this growth factor in cardiac development. Minor discrepancies in the distributions of TGF beta-1 RNA and the extracellular form of the TGF beta polypeptide suggest that translational or post-translational control of protein levels occurs and/or the possibility that the antibody used may also recognise other members of the TGF beta polypeptide family. A correlation between endothelial TGF beta-1 expression and distribution of J1/tenascin in the mesenchyme gives further support to the proposition that the biological effects of TGF beta-1 may, in part, be mediated by J1/tenascin.  相似文献   

2.
3.
4.
Murine transforming growth factor-beta 3 (TGF beta 3) cDNAs were isolated from a TGF beta 2-induced AKR-2B cDNA library. The composite cDNA sequence is 2894 nucleotides long, including 610-nucleotide and 1054-nucleotide 5' and 3' untranslated sequences, respectively. The murine TGF beta 3-coding region is 1230 nucleotides in length and encodes a precursor protein of 410 amino acids, with a 96% peptide sequence identity with the human TGF beta 3 precursor. Examination of TGF beta 1 and TGF beta 3 mRNA levels in adult murine tissues showed that TGF beta 1 mRNA expression is predominant in spleen, lung, and placenta. In contrast, TGF beta 3 RNA was present in substantial amounts in brain, heart, adipose tissue, and testis. TGF beta 3 mRNA is also observed in adult mouse lung and placenta. Both TGF beta 1 and TGF beta 3 RNAs were present in all stages of mouse fetal development studied from 10.5-17.5 days postcoitum, with higher levels observed in the latter stages. The differential expression of these TGF beta genes suggests that the various TGF beta species may have distinct physiological roles in vivo.  相似文献   

5.
6.
Using immunocytochemical methods we describe the distribution of different TGF beta isoforms and the effects of excess retinoic acid on their expression during early mouse embryogenesis (8 1/2 - 10 1/2 days of development). In normal embryos at 9 days, intracellular TGF beta 1 is expressed most intensely in neuroepithelium and cardiac myocardium whereas extracellular TGF beta 1 is expressed in mesenchymal cells and in the endocardium of the heart. At later stages, intracellular TGF beta 1 becomes very restricted to the myocardium and to a limited number of head mesenchymal cells; extracellular TGF beta 1 continues to be expressed widely in cells of mesenchymal origin, particularly in head and trunk mesenchyme, and also in endocardium. TGF beta 2 is widely expressed at all stages investigated while TGF beta 3 is not expressed strongly in any tissue at the stages examined. Exposure of early neural plate stage embryos to retinoic acid caused reduced expression of TGF beta 1 and TGF beta 2 proteins but had no effect on TGF beta 3. Intracellular TGF beta 1 expression was reduced in all tissues except in the myocardium, while extracellular TGF beta 1 was specifically reduced in neuroepithelium and cranial neural crest cells at early stages. TGF beta 2 was reduced in all embryonic tissues. The down-regulation of intracellular TGF beta 1 was observed up to 48 hours after initial exposure to retinoic acid while some down-regulation of TGF beta 2 was still seen up to 60 hours after initial exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Differential expression of TGF beta isoforms in murine palatogenesis   总被引:17,自引:0,他引:17  
We have studied the expression of genes encoding transforming growth factors (TGFs) beta 1, beta 2 and beta 3 during development of the secondary palate in the mouse from 11.5 to 15.5 days postcoitum using in situ hybridisation. The RNA detected at the earliest developmental stage is TGF beta 3, which is localised in the epithelial component of the vertical palatal shelf. This expression continues in the horizontal palatal shelf, predominantly in the medial edge epithelium, and is lost as the epithelial seam disrupts, soon after palatal shelf fusion. TGF beta 1 RNA is expressed with the same epithelial pattern as TGF beta 3, but is not detectable until the horizontal palatal shelf stage. TGF beta 2 RNA is localised to the palatal mesenchyme underlying the medial edge epithelia in the horizontal shelves and in the early postfusion palate. The temporal and spatial distribution of TGF beta 1, beta 2 and beta 3 RNAs in the developing palate, together with a knowledge of in vitro TGF beta biological activities, suggests an important role for TGF beta isoforms in this developmental process.  相似文献   

8.
The tissue distribution of TGF beta form 1 RNA within mouse embryos of 10.5 to 15.5 days gestational age was investigated using in situ hybridization. As predicted from the prevalence of TGF beta-1 protein in adult bone and platelets, the RNA is highly abundant in fetal bone and in fetal liver megakaryocytes. Our data also reveal previously undocumented sites of synthesis for TGF beta-1, namely epithelia overlying those mesenchymal tissues that are known to contain TGF beta protein as detected by immunohistochemical methods (Heine et al. 1987) and in the mesenchymal tissues of certain internal organs. From a combined knowledge of the distribution of the TGF beta polypeptide (Heine et al. 1987) and its mRNA, and a knowledge of the reported biological activities of TGF beta-1, we invoke both paracrine and autocrine mechanisms of action for this growth factor.  相似文献   

9.
The expression of the mesoderm inducing factors, activins and TGF beta s, was characterized in 5 1/2-9 1/2 day mouse embryos and implantation sites by in situ hybridization. Activin beta A RNA was not detected within the embryo, but is expressed in nearby decidual cells from 5 to 7 days. Thus activin A could play a role within the embyro during gastrulation. Activin beta A is also expressed in more mesometrially located decidual cells from 6 to 9 1/2 days. Activin beta B and inhibin alpha RNAs were not detected, while a control tissue was highly positive. TGF beta 1 is expressed in the secondary decidual zone and in developing endothelial cells in the decidua and embryo. TGF beta 2 is expressed in the mesometrial decidua at 6 1/2 days and in the midline of the cranial neural plate.  相似文献   

10.
11.
12.
We have used E1A probes to study the roles of the p34cdc2 kinase and the retinoblastoma tumor susceptibility gene product (pRB) in transforming growth factor beta 1 (TGF beta 1)-mediated growth suppression in mink lung epithelial (Mv1Lu) cells. In agreement with previous reports, we see a decline in p34cdc2 kinase activity and a loss of pRB phosphorylation after TGF beta 1 treatment. We report here that TGF beta 1 induces not only a change in p34cdc2 kinase activity but a strong repression of p34cdc2 synthesis. Loss of p34cdc2 kinase activity is not seen until the steady-state level of p34cdc2 declines, suggesting that the intra-cellular signals induced by TGF beta 1 affect p34cdc2 at the level of expression, rather than by altering the posttranslational modifications of p34cdc2 that regulate its kinase activity. Infection with adenovirus expressing either wild-type E1A or a mutant E1A (pm928) defective for pRB binding alleviated TGF beta 1-mediated suppression of DNA synthesis, indicating that E1A does not need to bind pRB physically to keep cell growth-suppressing functions from being activated by TGF beta 1. The E1A.928 mutant virus is able to maintain p34cdc2 expression and kinase activity, as well as pRB phosphorylation in the presence of TGF beta 1, which may account for its ability to maintain cell cycle activity without directly sequestering pRB. Overall our results suggest that TGF beta 1 acts by signaling changes at the level of control of G1 gene expression, not at the level of posttranslational modification of p34cdc2 or its substrates.  相似文献   

13.
Transforming growth factor beta (TGFβ) plays a crucial role in tissue fibrosis. A number of studies have shown that TGFβ3 significantly attenuated tissue fibrosis. However, the mechanism involved in this effect is poorly understood. In this study we found that the expression level of TGFβ3 was higher in human myocardial infarction (MI) tissues than in normal tissues, and interestingly, it increased with the development of fibrosis post‐myocardial infarction (post‐MI). In vitro, human cardiac fibroblasts (CFs) were incubated with angiotensin II (Ang II) to mimic the ischaemic myocardium microenvironment and used to investigate the anti‐fibrotic mechanism of TGFβ3. Then, fibrosis‐related proteins were detected by Western blot. It was revealed that TGFβ3 up‐regulation attenuated the proliferation, migration of human CFs and the expression of collagens, which are the main contributors to fibrosis, promoted the phenotype shift and the cross‐linking of collagens. Importantly, the expression of collagens was higher in the si‐smad7 groups than in the control groups, while silencing smad7 increased the phosphorylation level of the TGFβ/smad signalling pathway. Collectively, these results indicated that TGFβ3 inhibited fibrosis via the TGFβ/smad signalling pathway, possibly attributable to the regulation of smad7, and that TGFβ3 might serve as a potential therapeutic target for myocardial fibrosis post‐MI.  相似文献   

14.
We have examined by Northern analysis and in situ hybridisation the expression of TGF beta 1, beta 2 and beta 3 during mouse embryogenesis. TGF beta 1 is expressed predominantly in the mesodermal components of the embryo e.g. the hematopoietic cells of both fetal liver and the hemopoietic islands of the yolk sac, the mesenchymal tissues of several internal organs and in ossifying bone tissues. The strongest TGF beta 2 signals were found in early facial mesenchyme and in some endodermal and ectodermal epithelial cell layers e.g., lung and cochlea epithelia. TGF beta 3 was strongest in prevertebral tissue, in some mesothelia and in lung epithelia. All three isoforms were expressed in bone tissues but showed distinct patterns of expression both spatially and temporally. In the root sheath of the whisker follicle, TGF beta 1, beta 2 and beta 3 were expressed simultaneously. We discuss the implication of these results in regard to known regulatory elements of the TGF beta genes and their receptors.  相似文献   

15.
16.
Transforming growth factor beta 1 (TGF beta 1) has been shown to have multiple effects on primary cultures of palate-derived cell types. We report the analysis, by in situ hybridization, of RNA expression for three different TGF beta isoforms (TGF beta 1, beta 2, and beta 3) during murine embryonic palate development. Differential expression of the three TGF beta genes is seen in the palatal shelves in mesenchymal and epithelial cells known to be involved in the morphogenesis of this organ. Taken together, these results suggest that the TGF beta s act as endogenous factors involved in the formation of the mammalian palate.  相似文献   

17.
Type II alveolar epithelial cells (AEC II) proliferate and transdifferentiate into type I alveolar epithelial cells (AEC I) when the normal AEC I population is damaged in the lung alveoli. We hypothesized that signaling by transforming growth factor beta1 (TGF beta1), through its downstream Smad proteins, is involved in keeping AEC II quiescent in normal cells and its altered signaling may be involved in the trans-differentiation of AEC II to AEC I. In the normal lung, TGF beta1 and Smad4 were highly expressed in AEC II. Using an in vitro cell culture model, we demonstrated that the trans-differentiation of AEC II into AEC I-like cells began with a proliferative phase, followed by a differentiation phase. The expression of TGF beta1, Smad2, and Samd3 and their phosphorylated protein forms, and cell cycle inhibitors, p15(Ink4b) and p21(Cip1), was lower during the proliferative phase but higher during the differentiation phase. Furthermore, cyclin-dependent kinases 2, 4, and 6 showed an opposite trend of expression. TGF beta1 secretion into the media increased during the differentiation phase, indicating an autocrine regulation. The addition of TGF beta1 neutralizing antibody after the proliferative phase and silencing of Smad4 by RNA interference inhibited the trans-differentiation process. In summary, our results suggest that the trans-differentiation of AEC II to AEC I is modulated by signaling through the Smad-dependent TGF beta1 pathway by altering the expression of proteins that control the G1 to S phase entry in the cell cycle.  相似文献   

18.
Developmental expression of the TGF beta s in the mouse cochlea.   总被引:2,自引:0,他引:2  
Mice with targeted disruption of the TGF beta 2 gene display defects in epithelial-mesenchymal tissue interactions in several tissues including the developing cochlea. Specifically, the region of the spiral limbus and the overlying interdental cells, structures putatively involved in endolymphatic fluid homeostasis, display morphogenetic abnormalities. These findings prompted us to explore the pre-natal and post-natal expression of all three mammalian TGF beta genes in the developing mouse inner ear. TGF beta 2 mRNA expression was identified throughout the cochlear epithelium at all of the developmental stages examined. TGF beta 3 mRNA expression was identified in the mesenchymal tissues of the cochlea surrounding the otic epithelium. We found no evidence for compensation by the other two TGF beta isoforms in the cochleas of the TGF beta 2 mutants.  相似文献   

19.
Transforming growth factor beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation. We present data which indicate that epithelial cell proliferation is inhibited when TGF beta 1 is added throughout the prereplicative G1 phase. Cultures become reversibly blocked in late G1 at the G1/S-phase boundary. The inhibitory effects of TGF beta 1 on cell growth occur in the presence of the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Associated with this inhibitory effect is a decrease in the phosphorylation and histone H1 kinase activity of the p34cdc2 protein kinase. These data suggest that TGF beta 1 growth inhibition in epithelial cells involves the regulation of p34cdc2 activity at the G1/S transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号