首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Substantial progress in understanding the biology of regulatory T cells and their roles in health and disease has been achieved in the past 10 years. This has led to an increasing interest in the possibility of using regulatory T cells as a biological therapy to preserve and restore tolerance to self antigens and alloantigens. Immunotherapy by the adoptive transfer of regulatory T cells may have several advantages over conventional treatments. However, several hurdles have to be overcome before such a therapy can enter clinical practice. This Review summarizes our current knowledge of regulatory T cells, illustrates the ongoing regulatory T-cell-based clinical trials, analyses the strengths and pitfalls of this new therapeutic approach, and highlights the future perspectives.  相似文献   

2.
BALB/c and SJL mice were treated with nucleosides-IgG1 as a tolerogen, before either primary or secondary immunization with nucleosides-keyhole limpet hemocyanin. Nucleoside-specific responses were measured serologically by a modified Farr assay, with either 14C-labeled denatured DNA or nucleosides-131-I-labeled BSA as test antigen. Specificity of the response was tested by hapten inhition experiments. Multiple doses of nucleosides-IgG1 tolerogen given before the primary or secondary immunization effectively suppressed the secondary and tertiary anti-nucleoside responses. The tolerogen did not suppress the response to an unrelated hapten-KLH conjugate. The IgG alone did not suppress the anti-nucleoside response of BALB/c mice to nucleosides-KLH. Single doses of tolerogen before the primary or secondary immunization were less effective. Residual antibody in partially suppressed BALB/c mice showed changes in specificity as compared to controls. Suppression of the secondary response of SJL mice was measured much more readily by binding of nucleosides-131-I-BSA than by binding of denatured DNA. This reflected an altered specificity of the residual antibody; in control animals, antibodies were directed against all four nucleosides, whereas the antibodies of partially suppressed animals were directed only against guanosine. Suppression of anti-nucleic acid antibody responses may have therapeutic application in the management of systemic lupus erythematosus.  相似文献   

3.
Neonatal tolerance inducibility of self-major histocompatibility complex (MHC)-class II-associated antigens was compared with that of allo-class II antigens. BALB/c (H-2d, Mlsb) mice, less than 24 hr after birth, were intravenously injected with bone marrow cells of either (BALB/c X DBA/2)F1 (H-2d, Mlsb/a, semiallogeneic at the Mls locus) or (BALB/c X B10.BR)F1 (H-2d/k, Mlsb; semiallogeneic at the MHC), as antigens. The mice were tested for in vivo immune activity of class II-reactive T cells by means of the popliteal lymph node-swelling assay. They developed tolerance, irrespective of type of antigens, showing profoundly suppressed host-versus-graft reaction, and those tolerized to the allo-MHC antigens accepted skin grafts of the corresponding allogeneic mice. In the thymus and spleen of the Mls-tolerant mice, antigen-specific class II-reactive T-cell activity was completely abolished, without the apparent involvement of suppressor cells. In contrast, the activity in allo-MHC-tolerant mice was not reduced in either thymus or peripheral lymphoid organs, suggesting that systemic hyporesponsiveness is attributable to reversible suppression of immune competent cells. The resistance for cell-level tolerance induction to allo-class II antigens may not be ascribed to the active participation of allo-MHC antigens in prevention of or in escape from tolerance induction or both, since an injection of bone marrow cells of both Mls and H-2-semiallogeneic (DBA/2 X B10.BR)F1 (H-2d/k, Mlsa/b) mice could induce tolerance to Mlsa-H-2d antigens in newborn thymus cells.  相似文献   

4.
Specificity of anti-Mlsa tolerance induced in BALB/c (H-2d, Mlsb) neonates was investigated by a popliteal lymph node (PLN)-swelling assay for the local graft-versus-host (GVH) reaction by injecting tolerant thymus cells into the footpads of several types of F1 hybrid mice. When thymus cells were obtained from 1-week-old normal BALB/c, they evoked enlargement of PLNs of (BALB/c X DBA/2)F1 (H-2d, Mlsb/a) [CDF1] recipients and of other hybrid recipients, heterozygous in Mlsa,c,d alleles, irrespective of the major histocompatibility complex (MHC) haplotypes. The same thymus cells did not cause the response in MHC-heterozygous F1 hybrids when the hybrids were homozygous in Mlsb, identical with BALB/c mice. Therefore, the PLN response to Mls antigens, known to be closely associated with MHC-class II antigens, was not directed to the class II antigens themselves. This enabled us to examine the effects of MHC on tolerance induction to the Mls antigens. When BALB/c neonates were injected with CDF1 bone marrow cells, complete tolerance to Mlsa-H-2d antigens of CDF1 cells was induced in the thymus, while responsiveness to Mlsa antigens in the context of H-2k and H-2b antigens, was not affected. This indicates MHC-restriction of neonatal tolerance to Mls antigens. Furthermore, when Mls and H-2-heterozygous (BALB/c X AKR)F1 (H-2d/k, Mlsb/a) bone marrow cells served as the tolerogen, thymus cells of BALB/c neonates were also tolerized to Mlsa-H-2k antigens as well as to Mlsa-H-2d antigens, which suggests the involvement of MHC, probably class II antigens of tolerance-inducing cells.  相似文献   

5.
6.
7.
8.
Fluoresceinated heteroantisera prepared against T cells of rats, monkeys, and humans were reacted withthymus and spleen cells from 11 selected species. These reagents recognized cross-reacting T cell antigen(s) among rodent species (mouse, rat, guinea pig, and hamster) and among primate species (monkey and humans). With one exception, the cross-reactivity was restricted to a phylogenetic order. All three antisera required relatively few absorptions to achieve T cell specificity for related species when compared to absorption requirements for the isologous species. Differentiation antigens within a phylogenetic order thus appear to be more homologous than other cell surface constituents on T cells.  相似文献   

9.
10.
T-cell anergy and peripheral T-cell tolerance   总被引:1,自引:0,他引:1  
The discovery that T-cell recognition of antigen can have distinct outcomes has advanced understanding of peripheral T-cell tolerance, and opened up new possibilities in immunotherapy. Anergy is one such outcome, and results from partial T-cell activation. This can arise either due to subtle alteration of the antigen, leading to a lower-affinity cognate interaction, or due to a lack of adequate co-stimulation. The signalling defects in anergic T cells are partially defined, and suggest that T-cell receptor (TCR) proximal, as well as downstream defects negatively regulate the anergic T cell's ability to be activated. Most importantly, the use of TCR-transgenic mice has provided compelling evidence that anergy is an in vivo phenomenon, and not merely an in vitro artefact. These findings raise the question as to whether anergic T cells have any biological function. Studies in rodents and in man suggest that anergic T cells acquire regulatory properties; the regulatory effects of anergic T cells require cell to cell contact, and appear to be mediated by inhibition of antigen-presenting cell immunogenicity. Close similarities exist between anergic T cells, and the recently defined CD4+ CD25+ population of spontaneously arising regulatory cells that serve to inhibit autoimmunity in mice. Taken together, these findings suggest that a spectrum of regulatory T cells exists. At one end of the spectrum are cells, such as anergic and CD4+ CD25+ T cells, which regulate via cell-to-cell contact. At the other end of the spectrum are cells which secrete antiinflammatory cytokines such as interleukin 10 and transforming growth factor-beta. The challenge is to devise strategies that reliably induce T-cell anergy in vivo, as a means of inhibiting immunity to allo- and autoantigens.  相似文献   

11.
Alphabeta T cells pass through a series of lymphoid tissue stromal microenvironments to acquire self tolerance and functional competence. In the thymus, positive selection of the developing T-cell receptor repertoire occurs in the cortex, whereas events in the medulla purge the system of self reactivity. T cells that survive are exported to secondary lymphoid organs where they direct first primary and then memory immune responses. This Review focuses on the microenvironments that nurture T-cell development rather than on T cells themselves. We summarize current knowledge on the formation of thymic epithelial-cell microenvironments, and highlight similarities between the environments that produce T cells and those that select and maintain them during immune responses.  相似文献   

12.
13.
Mice were rendered tolerant to bovine serum albumin (BSA) or fowl γ-globulin (FGG) by neonatal injection. Spleen and thymus cells from tolerant mice were able to suppress responsiveness of normal adult spleen cells, but only if tolerant donor mice were between the ages of 6 weeks and the age at which mice were no longer tolerant (10 weeks for BSA tolerance and 20 weeks for FGG tolerance). To determine whether T-cell-dependent suppression was obligatory for the maintenance of tolerance, neonatal nude and euthymic littermate mice were injected with tolerizing doses of FGG. FGG-specific B-cell tolerance in nude mice lasted until the mice were 8 weeks of age. In sharp contrast, B-cell tolerance in euthymic littermates lasted until 22 weeks of age. These results are consistent with a “fail-safe” role of T-cell-dependent immune suppression in the maintenance of tolerance.  相似文献   

14.
T-cell recognition of melanoma-associated antigens   总被引:9,自引:0,他引:9  
In this review, we summarize the significant progress that has been made in the identification of melanoma-associated antigens (MAA) recognized by cytotoxic T-lymphocytes (CTL). These antigens belong to three main groups: tumor-associated testis-specific antigens (e.g. , MAGE, BAGE, and GAGE); melanocyte differentiation antigens (e.g., tyrosinase, Melan-A/MART-1); and mutated or aberrantly expressed molecules (e.g, CDK4, MUM-1, beta-catenin). Although strong CTL activity may be induced ex vivo against most of these antigens, often in the presence of excess cytokines and antigen, a clear understanding of the functional status of CTL in vivo and their impact on tumor growth, is still lacking. Several mechanisms are described that potentially contribute to tumor cell evasion of the immune response, suggesting that any antitumor efficacy achieved by immune effectors may be offset by factors that result ultimately in tumor progression. Nevertheless, most of these MAA are currently being investigated as immunizing agents in clinical studies, the conflicting results of which are reviewed. Indeed, the therapeutic potential of MAA has still to be fully exploited and new strategies have to be found in order to achieve an effective and long-lasting in vivo immune control of melanoma growth and progression.  相似文献   

15.
Third-party skin allografts were employed to test the specificity of transplantation tolerance achieved by neonatal inoculation of cells bearing H-2 alloantigens. Tolerant animals rejected with normal vigour third-party grafts expressing strong Class I alloantigens foreign to the host and to the donor of the tolerance-conferring inoculum. However, these animals rejected with exceptional vigour third-party grafts expressing weak Class II alloantigens plus the tolerated Class I alloantigen; even third-party grafts comprised of the host's own Class II antigens in conjunction with the tolerated Class I alloantigen were acutely rejected. It is proposed, but there is no direct evidence to prove, that rejection of these third-party grafts is mediated by killer T cells directed at the tolerated Class I alloantigens and that these cells are activated by the presentation of the putative tolerogen in an inappropriate I region context. Inconsistency of these data with a clonal deletion mechanism is discussed.  相似文献   

16.
There is now substantial evidence that antigen post-translational modifications are recognized by T cells, and alterations in epitope modification has been linked to a number of autoimmune diseases. An estimated one third of the MHC ligands contain post-translational modification of epitopes. A common post-translational modification of proteins is glycosylation and it is predicted on theoretical grounds that approximately 1-5% of MHC ligands may bear a glycan. From numerous studies over the past 15 years it is clear that glycans can influence T cell responses either by contribution to the structure of the epitope or by influencing the profile of peptide epitopes presented by APCs. The influence of glycans on antigen processing and T cell recognition has particular relevance to the induction of tolerance to self-antigens. Here we discuss the potential impact of glycans on the profile of self-epitopes presented by APCs and the consequence of changes in glycosylation to generate neo self-epitopes resulting in the loss of tolerance and the development of autoimmune diseases. With the recent developments in profiling T cell epitopes, and with strategies for modulating glycosylation in vivo, it is now feasible to directly examine the global influence of glycans on self-tolerance and autoimmunity.  相似文献   

17.
The intestinal immune system has to discriminate between harmful and beneficial antigens. Although strong protective immunity is essential to prevent invasion by pathogens, equivalent responses against dietary proteins or commensal bacteria can lead to chronic disease. These responses are normally prevented by a complex interplay of regulatory mechanisms. This article reviews the unique aspects of the local microenvironment of the intestinal immune system and discuss how these promote the development of regulatory responses that ensure the maintenance of homeostasis in the gut.  相似文献   

18.
Summary The present study investigates the potential of bone marrow cells from mice tolerant to tumor antigens to repopulate tumor-specific effector T cells. C3H/He mice were inoculated i.v. with 106 10000 R X-irradiated syngeneic X5563 plasmacytoma tumor cells three times at 4-day intervals. This regimen abrogated the ability of spleen cells from these mice to develop anti-X5563 cytotoxic and in vivo protective (tumor-neutralizing) T cell-mediated immunity as induced by i.d. inoculation of viable X5563 cells followed by surgical resection of the tumor. Since such suppression was induced in a tumor-specific way, this represented a state of antitumor tolerance. When bone marrow cells from normal or X5563-tolerant mice were transferred i.v. into 950 R X-irradiated syngeneic C3H/He mice, both groups of recipient mice generated anti-X5563 tumor immunity over a similar time course and to almost the same degree. Anti-X5563 tumor immunity induced in (C3H/He×C57BL/6) F1 mice which had been transferred with bone marrow cells from normal or X5563-tolerant C3H/He mice were mediated by T cells expressing the Ly phenotype of C3H/He, but not of C57BL/6, excluding the possibility that the antitumor effector cells were derived from recipient mice. It was also demonstrated that C3H/He mice which had been reconstituted with normal marrow were rendered tolerant when the tolerance regimen was started 7 weeks, but not 1 week after the bone marrow reconstitution. These results indicate that bone marrow cells from antitumor tolerant mice are not rendered tolerant to the tumor but can provide the potential to repopulate antitumor CTL and in vivo protective effector T cells.This work was supported by the Special Project Cancer-Bioscience from the Ministry of Education, Science and Culture, Japan Abbreviations used: MHC, major histocompatibility complex; CTL, cytotoxic T lymphocytes; TNP, trinitrophenyl; C, complement; TNBS; trinitrobenzene sulfonate; MMC, mitomycin C  相似文献   

19.
C3H/He mice were injected i.v. with heavily X-irradiated syngeneic X5563 tumor cells three times at 4-day intervals. This regimen resulted in the abrogation of the potential to generate X5563 tumor-specific T cell-mediated immunity as induced by i.d. inoculation of viable X5563 tumor cells followed by surgical resection of the tumor, representing the tolerance induction. Although such a tumor-specific tolerant state was long-lasting, the recovery of anti-X5563 effector T cell responses was observed when the above ordinary immunization procedure was performed 6 months after the tolerance induction. The present study investigated whether the recovery from the tolerance can be accelerated by applying a helper-effector T-T cell interaction model in which enhanced anti-X5563 immunity is obtained by priming mice with BCG and by immunizing X5563 tumor cells modified with BCG cross-reactive MDP hapten (designated as L4-MDP) in the presence of anti-L4-MDP helper T cells preinduced with BCG. The results demonstrated that BCG-primed mice which received the tolerance regimen failed to generate anti-X5563 immunity when the ordinary immunization was performed 2 or 3 months after the tolerance induction. In contrast, the immunization of BCG-primed and X5563-tolerant mice with L4-MDP-coupled X5563 tumor cells at comparable timing to that of the ordinary immunization were capable of generating potent X5563-specific in vivo protective T cell-mediated immunity. As control groups, BCG-primed or unprimed tolerant mice did not develop anti-X5563 immunity when immunized with L4-MDP-uncoupled or L4-MDP-coupled tumor cells, respectively. These results indicate that immunization of BCG-primed, tumor-tolerant mice with L4-MDP-modified tumor cells results in accelerated recovery from the tumor tolerance.  相似文献   

20.
Induction and termination of immunologic tolerance to protein antigens   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号