共查询到20条相似文献,搜索用时 0 毫秒
1.
Treves S Thurnheer R Mosca B Vukcevic M Bergamelli L Voltan R Oberhauser V Ronjat M Csernoch L Szentesi P Zorzato F 《The Biochemical journal》2012,441(2):731-741
In the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that its N-terminus encompasses a short hydrophobic sequence bound to the sarcoplasmic reticulum membrane, whereas its C-terminal catalytic domain faces the myoplasm. SRP-35 is also expressed in liver and adipocytes, where it appears in the post-microsomal supernatant; however, in skeletal muscle, SRP-35 is enriched in the longitudinal sarcoplasmic reticulum. Sequence comparison predicts that SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C [dehydrogenase/reductase (short-chain dehydrogenase/reductase family) member 7C] subfamily. Retinol is the substrate of SRP-35, since its transient overexpression leads to an increased production of all-trans-retinaldehyde. Transfection of C2C12 myotubes with a fusion protein encoding SRP-35-EYFP (enhanced yellow fluorescent protein) causes a decrease of the maximal Ca2? released via RyR (ryanodine receptor) activation induced by KCl or 4-chloro-m-chresol. The latter result could be mimicked by the addition of retinoic acid to the C2C12 cell tissue culture medium, a treatment which caused a significant reduction of RyR1 expression. We propose that in skeletal muscle SRP-35 is involved in the generation of all-trans-retinaldehyde and may play an important role in the generation of intracellular signals linking Ca2+ release (i.e. muscle activity) to metabolism. 相似文献
2.
Characterization of sarcoplasmic reticulum from skeletal muscle 总被引:11,自引:0,他引:11
3.
4.
Sarcoplasmic reticulum proteins have been cross-linked in situ with two reagents, the disulphide-bridged bifunctional imido ester, dimethyl-3,3'-dithiobispropionimidate dihydrochloride and the mild oxidant cupric phenanthroline. Analysis of proteins so cross-linked by electrophoresis on agarose/acrylamide gels reveals that a series of new polypeptides, up to a molecular weight of 900 000, are formed. These have molecular weights which are multiples of 100 000. Further analysis of samples by electrophoresis in a second dimensions containing a reducing agent revealed the monomeric polypeptides from which the cross-linked polypeptides were formed. With dimethyl 3,3'-dithiobispropionimidate dihydrochloride homopolymers of the Ca2+-stimulated ATPase, calsequestrin and/or calcium binding protein were formed. With cupric phenanthroline only the Ca2+-stimulated ATPase was involved in polymer formation. It has been confirmed on another gel system that these two proteins which are involved in Ca2+ binding are not cross-linked intermolecularly with this latter reagent. We conclude that the 100 000 dalton Ca2+-stimulated ATPase polypeptides are within 2 A of each other in the membrane while calsequestrin and/or calcium binding protein are within 11 A of each other. Although there appears to be no limit to the extent of cross-linking of any of these polypeptides there is not indication of heteropolymer associations between them. 相似文献
5.
While differing in numerous physiological and biochemical parameters, mammalian cardiac and skeletal muscles exhibit many common ultrastructural characteristics. General subcellular organization is similar with longitudinal disposition and organization of the myofibrils as well as subcellular organelles such as mitochondria, sarcoplasmic reticulum and transverse tubules. Significant differences are more readily discerned in terms of degree, not only with respect to relative amounts of various organelles, but also in regard to membrane composition. It is these macromolecular variations in membrane components which may, at least in part, provide the basis for differences in overall functional characteristics in the muscles.In cardiac, as well as skeletal muscle, the concentration of Ca2+ ions at specific intracellular sites regulates the contractile state of the muscle. The differences in mechanism and sources of Ca2+ for contraction in cardiac and skeletal muscle are but a few of the unsolved areas which are now being addressed. We shall focus primarily on research advances involving cardiac and skeletal SR emphasizing the contrasting features related to their functional roles in control of contraction and metabolic events. 相似文献
6.
The proteins of rabbit skeletal muscle sarcoplasmic reticulum 总被引:6,自引:0,他引:6
7.
Schulz JS Palmer N Steckelberg J Jones SJ Zeece MG 《Biochimica et biophysica acta》2006,1764(9):1429-1435
Microarrays were developed to profile the level of proteins associated with calcium regulation in sarcoplasmic reticulum (SR) isolated from porcine Longissimus muscle. The microarrays consisted of SR preparations printed onto to glass slides and probed with monoclonal antibodies to 7 target proteins. Proteins investigated included: ryanodine receptor, (RyR), dihydropyridine receptor, (DHPR), triadin (TRI), calsequestrin (CSQ), 90 kDa junctional protein (JSR90), and fast-twitch and slow-twitch SR calcium ATPases (SERCA1 and SERCA2). Signal from a fluorescently-labeled detection antibody was measured and quantitated using a slide reader. The microarray developed was also employed to profile Longissimus muscle SR proteins from halothane genotyped animals. Significant (P<0.05) reductions in levels of several proteins were found including: RyR, CSQ, TRI, DHPR and SERCA2 in SR samples from halothane positive animals. The results illustrate the potential of microarrays as a tool for profiling SR proteins and aiding investigations of calcium regulation. 相似文献
8.
The nucleotide-binding site of the sarcoplasmic reticulum Ca-ATPase is conformationally altered in aged skeletal muscle. 总被引:2,自引:0,他引:2
Cellular conditions in senescent skeletal muscle have been shown to result in the loss of conformational stability of the sarcoplasmic reticulum (SR) Ca-ATPase. To identify underlying structural features of age-modified Ca-ATPase, we have utilized the fluorescence properties of protein-bound probes to assess both local and global structure. We find conformational changes that include an age-related decrease in the apparent binding affinity to high affinity calcium sites detected by fluorescence signals in both tryptophans within nearby membrane-spanning helices and fluorescein isothiocyanate (FITC) bound distally to Lys(515) within the nucleotide-binding site. In addition, a substantial (80%) age-related increase in the accessibility to soluble quenchers of fluorescence of FITC is observed without concomitant changes in bimolecular quenching constants (k(q)) for protein-bound IAEDANS, also within the nucleotide-binding domain, and tryptophans within the membrane. Using fluorescence resonance energy transfer to measure distances between IAEDANS and FITC across the nucleotide-binding domain, we find no significant age-related change in the mean donor-acceptor distance; however, significant increases are observed in the conformational heterogeneity of this domain, as assessed by the width at half-maximum (HW) of the distance distribution, increasing with age from 29.4 +/- 0.8 A to 42.5 +/- 1. 1 A. Circular dichroism indicates that the average secondary structure is unaltered with age. Thus, these data suggest tertiary structural alterations in specific regions around the nucleotide-binding site rather than global conformational changes. 相似文献
9.
Sarcoglycans are transmembrane proteins that are members of the dystrophin complex. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle fibers. However, it is still unclear whether or not sarcoglycans are restricted to the sarcolemma. To address this issue, we examined alpha-, beta-, delta-, and gamma-sarcoglycan expression in femoral skeletal muscle from control and dystrophin-deficient mice and rats using confocal microscopy and immunoelectron microscopy. Confocal microscopy of the tissues in cross-section showed that all sarcoglycans were detected under the sarcolemma in rats and control mice. delta- and gamma-sarcoglycan labeling demonstrated striations in the longitudinal section, suggesting that the proteins were expressed in the sarcoplasmic reticulum (SR) or transverse tubules (T-tubules). Moreover, such striations of both sarcoglycans were recognized in the dystrophin-deficient mouse skeletal muscle. Double labeling with phalloidin or alpha-actinin and delta- or gamma-sarcoglycan showed different labeling patterns, indicating that delta-sarcoglycan localization was distinct from that of gamma-sarcoglycan. Immunoelectron microscopy clarified that delta-sarcoglycan was localized in the terminal cisternae of the SR, while gamma-sarcoglycan was found in the terminal cisternae and longitudinal SR over I-bands but not over A-bands. These data demonstrate that delta- and gamma-sarcoglycans are components of the SR in skeletal muscle, suggesting that both sarcoglycans function independent of the dystrophin complex in the SR. 相似文献
10.
The effects of an antiserum against the 53-kDa glycoprotein (GP-53) of the sarcoplasmic reticulum (SR) and of monoclonal antibodies against GP-53 on Ca2+ transport and ATP hydrolysis by SR of rabbit skeletal muscle have been investigated. Preincubation of SR with an antiserum against GP-53 resulted in decreased ATP-driven Ca2+ transport by the SR but had no effect on Ca2+-stimulated ATP hydrolysis. Preincubation of SR with preimmune serum had no significant effect on either Ca2+ transport or Ca2+-ATPase activity. The effect of anti-GP-53 serum was time and concentration dependent. Preincubation of SR with two monoclonal antibodies against GP-53 had no effect on Ca2+ transport or on Ca2+-stimulated ATP hydrolysis. However, preincubation of SR with either monoclonal antibody against GP-53 together with a monoclonal antibody against the Ca2+-ATPase (at levels which had little effect alone) resulted in markedly decreased rates of Ca2+ uptake and ATP hydrolysis. Preincubation of SR with anti-GP-53-serum or with monoclonal antibodies, under the same conditions that inhibited Ca2+ uptake, did not increase the passive permeability of the SR membrane to Ca2+, did not decrease the permeability of the SR to oxalate, and did not cause significant proteolysis of the Ca2+-ATPase. Our results are consistent with the interpretation that GP-53 may modulate the function of the Ca2+-ATPase of the SR membrane. 相似文献
11.
J Stuart I N Pessah T G Favero J J Abramson 《Archives of biochemistry and biophysics》1992,292(2):512-521
The photooxidizing xanthene dye rose bengal is shown to induce rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. In the presence of light, nanomolar concentrations of rose bengal increase the Ca2+ permeability of the SR and stimulate the production of singlet oxygen (1O2). In the absence of light, no 1O2 production is measured. Under these conditions, higher concentrations of rose bengal (micromolar) are required to stimulate Ca2+ release. Furthermore, removal of oxygen from the release medium results in marked inhibition of the light-dependent reaction rate. Rose bengal-induced Ca2+ release is relatively insensitive to Mg2+. At nanomolar concentrations, rose bengal inhibits [3H]ryanodine binding to its receptor. beta,gamma-Methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, inhibits rose bengal-induced Ca2+ release and prevents rose bengal inhibition of [3H]ryanodine binding. Ethoxyformic anhydride, a histidine modifying reagent, at millimolar concentrations induces Ca2+ release from SR vesicles in a manner similar to that of rose bengal. The molecular mechanism underlying rose bengal modification of the Ca2+ release system of the SR appears to involve a modification of a histidyl residue associated with the Ca2+ release protein from SR. The light-dependent reaction appears to be mediated by singlet oxygen. 相似文献
12.
Effects of the lethal fraction (MD-9) from the venom of the Mojave rattlesnake, Crotalus scutulatus, on sarcoplasmic reticulum were investigated. The calcium sequestering activity of the vesicles was reduced by the lethal fraction and subsequent release of calcium was enhanced. These effects were observed to be dependent upon MD-9 concentration and the length of preincubation time with the vesicles. An enhanced ATPase activity that was affected by concentration and MD-9 preincubation time was also observed. Both calcium uptake and ATPase activity effects may be due to a phospholipase activity associated with the fraction. 相似文献
13.
14.
A Takagi 《Biochimica et biophysica acta》1971,248(1):12-20
15.
16.
Nori A Valle G Bortoloso E Turcato F Volpe P 《American journal of physiology. Cell physiology》2006,291(2):C245-C253
Calsequestrin (CS) is the low-affinity, high-capacity calcium binding protein segregated to the lumen of terminal cisternae (TC) of the sarcoplasmic reticulum (SR). The physiological role of CS in controlling calcium release from the SR depends on both its intrinsic properties and its localization. The mechanisms of CS targeting were investigated in skeletal muscle fibers and C2C12 myotubes, a model of SR differentiation, with four deletion mutants of epitope (hemagglutinin, HA)-tagged CS: CS-HA24NH2, CS-HA2D, CS-HA3D, and CS-HAHT, a double mutant of the NH2 terminus and domain III. As judged by immunofluorescence of transfected skeletal muscle fibers, only the double CS-HA mutant showed a homogeneous distribution at the sarcomeric I band, i.e., it did not segregate to TC. As shown by subfractionation of microsomes derived from transfected skeletal muscles, CS-HAHT was largely associated to longitudinal SR whereas CS-HA was concentrated in TC. In C2C12 myotubes, as judged by immunofluorescence, not only CS-HAHT but also CS-HA3D and CS-HA2D were not sorted to developing SR. Condensation competence, a property referable to CS oligomerization, was monitored for the several CS-HA mutants in C2C12 myoblasts, and only CS-HA3D was found able to condense. Together, the results indicate that 1) there are at least two targeting sequences at the NH2 terminus and domain III of CS, 2) SR-specific target and structural information is contained in these sequences, 3) heterologous interactions with junctional SR proteins are relevant for segregation, 4) homologous CS-CS interactions are involved in the overall targeting process, and 5) different targeting mechanisms prevail depending on the stage of SR differentiation. protein-protein interactions; oligomerization; intracellular sorting 相似文献
17.
Membrane vesicles from sarcoplasmic reticulum of rabbit skeletal muscle were incorporated into a bilayer lipid membrane. With this system, single current fluctuation was observed in the presence of 50 mM Ba-gluconate. This channel activity was observed only in vesicles from terminal cisternae. The single channel conductance was 14.1 pS, and the channel state was almost wholly open. The open-close transition of the channel obeyed simple two-state kinetics and was voltage-independent. The ionic selectivity was also studied, and the channel showed no selectivity among Ba, Ca, Mn, and Mg. On the other hand, it was less permeable to Cs than to Ba. Based on these results, the relation of the Ca channel to excitation-contraction coupling is discussed. 相似文献
18.
19.
20.
The quenching of the intrinsic protein fluorescence of sarcoplasmic reticulum Ca-ATPase from the rabbit skeletal muscles by hydrophylic (NaI, CsCl) or hydrophobic (pyrene, fluorescamine) substances has been studied. CsCl (up to 1 M) has been shown not to affect the intrinsic protein fluorescence while NaI (250 mM) quenches it at 15%, pyrene (8 mkM) decreases the intrinsic fluorescence of Ca-ATPase at 35% and fluorescamine (up to 40 mkM)--at 80%. Possible mechanisms of the interaction of the quenchers with the intrinsic fluorescence of sarcoplasmic reticulum Ca-ATPase are being discussed. 相似文献